
Towards Data-Efficient Neural Networks

Chaitanya Devaguptapu

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

भारतीय ूौкोѠगकҴ ससं्थान हदैराबाद
Indian Institute of Technology Hyderabad

Department of Computer Science and Engineering

June 20, 2022

© 2022 by Chaitanya Devaguptapu

All rights reserved

Declaration
I declare that this written submission represents my ideas in my own words, and
where ideas or words of others have been included, I have adequately cited and ref-
erenced the original sources. I also declare that I have adhered to all principles of
academic honesty and integrity and have not misrepresented or fabricated or falsified
any idea/data/fact/source in my submission. I understand that any violation of the
above will be a cause for disciplinary action by the Institute and can also evoke penal
action from the sources that have thus not been properly cited, or from whom proper
permission has not been taken when needed.

————————–
(Signature)

Chaitanya Devaguptapu
—————————

(Name)

CS19MTECH11025
—————————–

(Roll No.)

Approval Sheet
This Thesis entitled Towards Data-Efficient Neural Networks by Chaitanya

Devaguptapu is approved for the degree of Master of Technology from IIT Hyderabad.

————————–
(Dr. C Krishna Mohan) Examiner

Dept. of Computer Science and Engineering
Indian Institute of Technology Hyderabad

————————–
(Dr. Srijith P.K) Examiner

Dept. of Computer Science and Engineering
Indian Institute of Technology Hyderabad

————————–
(Dr. Vineeth N Balasubramanian) Adviser

Dept. of Computer Science and Engineering
Indian Institute of Technology Hyderabad

————————–
(Dr.Sobhan Babu) Chairman

Dept. of Computer Science and Engineering
Indian Institute of Technology Hyderabad

Chaitanya Devaguptapu
VNB sign

Chaitanya Devaguptapu

Acknowledgements
Firstly, I thank my supervisor Dr. Vineeth N Balasubramanian for believing in me

that I am capable of doing research. He’s provided great support during my M.Tech
and I couldn’t thank him enough for all the things that I have learnt from him,
both academically and non-academically. I would also take this opportunity to thank
all my friends in IITH without whom this journey would have been really boring.
Furthermore, I would like to thank Dr Animesh Garg from the PAIR Lab, University
of Toronot, for their continuous support and valuable guidance. I also would love to
thank all the faculty members of our department who taught us valuable things and
always supported us. Thank you everyone. This has been quite a fantastic journey
that I will remember forever.

iv

Dedication

To my parents for their support in my decision to pursue higher studies

v

Abstract
Deep learning systems have seen wide adoption in the last couple of years for solv-

ing various large-scale, real-world problems. These systems have succeeded in solving
various long-standing difficult problems like protein folding (AlphaFold), automatic
image and text generation (GPT-3, DALLE-2, ImageGen), etc. While these results
are impressive, most of the current deep learning systems require vast amounts of data
and compute to give a reasonably good performance, and they are also very brittle
and suffer from various problems like algorithmic fairness and vulnerability to adver-
sarial examples. Considering the scale at which these systems are being adopted for
various real-world applications, it is not only important but essential to make them
more efficient in terms of the amount of data and compute that is required to train,
along with making them robust to common attacks like adversarial attacks. This
thesis provides a multi-facet view of efficiency and paves a way to make the current
deep learning systems more data-efficient.

vi

Contents

Declaration . ii
Approval Sheet . iii
Acknowledgements . iv
Abstract . vi
List of Tables . x
List of Figures . xii
List of Algorithms . xv
List of Publications . 1

1 Introduction and Background 2
1.1 The Need for Data-Efficient Neural Networks 2
1.2 A Multi-Faceted view of Efficiency 2

1.2.1 Efficiency: Modality Perspective 3
1.2.2 Efficiency: Data Annotation Perspective 3
1.2.3 Efficiency: Architecture and Robustness Perspective 4
1.2.4 Efficiency: Transfer Learning Perspective 5

2 Improving Object Detection in Thermal imagery 6
2.1 Borrowing from Rich Domains like RGB 6
2.2 Object Detection methods for Thermal Imagery 6
2.3 Multi-Modal Thermal Object Detector (MMTOD) 8
2.4 Experiments and Analysis . 11

2.4.1 Datasets and Experimental Setup 11
2.4.2 Results . 14

2.5 Discussion and Ablation Studies . 17
2.6 Conclusion . 20

3 On Initial Pools for Deep Active Learning 21
3.1 Understanding the role of Initial Pool in Deep AL 21

vii

3.2 Related Work . 22
3.3 Methods and Experimental Protocol 24

3.3.1 Pool-based Active Learning Setting 24
3.3.2 Proposed Initial Pool Sampling Strategies 24
3.3.3 Active Learning Query Methods 27

3.4 Implementation Details . 27
3.4.1 Additional Experiments . 28

3.5 Experimental Results . 28
3.5.1 Initial Pool Sampling Details 29
3.5.2 Results . 30

3.6 More Training Details . 36
3.6.1 Slightly Modified ResNet18 Model 36
3.6.2 Hyperparmeters for AL Training 36
3.6.3 SimCLR, SCAN and VAE Training 36

3.7 Conclusion . 37

4 On Adversarial Robustness: A Neural Architecture Search perspec-
tive 38
4.1 Understanding Adversarial Robustness from an Architecture Perspective 38
4.2 Adversarial Robustness and Neural Architecture Search 40
4.3 Robustness of NAS models: A Study 42
4.4 Analysis and Results . 44

4.4.1 How Robust is existing SoTA Image Classification Architecture
without any form of Adversarial Training? 45

4.4.2 How do NAS based models compare with Hand-crafted models
in terms of Architectural Robustness? 46

4.4.3 Does an increase in the number of parameters of Architecture
help improve Robustness? . 49

4.4.4 Where does the source of adversarial vulnerability lie for NAS?
Is it in the search space or in the way the current methods are
performing the search? . 51

4.5 Conclusion . 53

5 On the Use of Skip Connections for Transfer Learning 54
5.1 Need for Input-Adaptive Skip Connections 54
5.2 Transfer Learning and Input-Conditioned Architectures 56
5.3 AdaSkips for Transfer Learning . 58

viii

5.4 Experiments and Results . 62
5.5 Analysis and Ablation Studies . 64

5.5.1 Does Routing alone help? . 64
5.5.2 Flop and Parameter Count Statistics 66
5.5.3 Fine-tuning in Limited Data settings 67
5.5.4 Study of different components involved in AdaSkips 68
5.5.5 AdaSkips for Standard Image Classification 70

5.6 Conclusion . 70

6 Conclusion and Future Directions 71

References 73

ix

List of Tables

2.1 Performance comparison of proposed methodology against baseline on
FLIR [1] . 15

2.2 Performance comparison of proposed methodology against baseline on
KAIST [2] . 16

2.3 Statistics of the datasets we used for our experiments. 18
2.4 Performance comparison of proposed methodology against baseline on

FLIR (1/2) . 18
2.5 Performance comparison of proposed methodology against baseline on

FLIR (1/4) . 19
2.6 Performance comparison of proposed methodology against baseline on

FLIR 400× 400 images . 19

3.1 Hyper-parameters of AL Cycles . 36
3.2 Final Model Performances after Self-Labeling (SimCLR + SCAN +

Self-Label) . 37

4.1 EfficientNet Architecture comparison on ImageNet dataset with fixed
image size of 224 x 224 (Top-5 Accuracy) 45

4.2 Comparison of clean accuracy and adversarial robustness on CIFAR-10
dataset (Top-1 Accuracy) . 48

4.3 Comparison of clean accuracy and adversarial robustness on CIFAR-
100 dataset (Top-1 Accuracy) . 48

4.4 Comparison of clean accuracy and adversarial robustness on ImageNet
dataset (Top-5 Accuracy) . 48

4.5 Comparison of clean accuracy and adversarial robustness on Flowers-
102 dataset (Top-1 Accuracy) . 49

4.6 Comparison of parameter count vs Adversarial accuracy for five dif-
ferent family of architectures on ImageNet dataset 50

x

4.7 Adversarial accuracy comparison of DARTS based architectures on
CIFAR-10 dataset . 52

5.1 Comparison of performance of AdaSkips with existing methods on
standard TL benchmark [3], including in low-data regimes with lim-
ited target data. (E.g, 50% denotes availability of 50% of target dataset
for finetuning). Note that AdaSkips can not only outperform
existing TL approaches, but can also improve performance of
existing TL approaches (see row for Bi-Tuning + AdaSkips) 63

5.2 AdaSkips improves performance of existing ZSDA methods.
Comparison of introducing AdaSkips for Zero-Shot domain adaptation
using a base ResNet-18 network . 64

5.3 Comparison of different architectures on five fine-grained classification
datasets. AdaSkips improve performance significantly when
the semantic relationship between source and target datasets
is minimal . 66

5.4 Qualitative comparison of Parameters and Flops for standard models
and models with AdaSkips on FGVC-Aircraft 67

5.5 HyperNetwork and Batchnorm both play a key role in im-
proving the performance. Quantitative ablation analysis of marginal
contribution of each component in AdaSkips. 69

5.6 AdaSkips can help improve performance on common image
classification benchmark datasets without pre-training. Com-
parison of different architectures when trained from scratch without
any pre-training on standard image classification datasets 70

xi

List of Figures

2.1 Adaptation of proposed Mutli-modal framework for Faster-RCNN . . 9
2.2 Row 1 & Row 2: Example images from FLIR [1] ADAS dataset, Row

3: Example Images from KAIST [2] dataset 12
2.3 Row 1: Thermal images from FLIR ADAS[1] dataset; Row 2: Trans-

lations generated using UNIT[4]; Row 3: Translations generated using
CycleGAN[5]. 15

2.4 Qualitative results of detections on the FLIR ADAS dataset. Row 1:
Baseline Row 2: MMTOD . 16

2.5 Qualitative results of detections on the KAIST. Row 1: Baseline. Row
2: MMTOD . 17

2.6 Qualitative comparison: Left: Detection with single mode Faster-
RCNN; Middle: Detection using the proposed method; Right: An-
notated Ground Truth as provided in FLIR dataset [1]. 17

2.7 Some examples of missed detections, Red: Predictions using MMTOD,
Green: Ground Truth . 20

3.1 Illustration of query strategies in traditional pool-based AL: (a) A toy
dataset of 500 instances, evenly sampled from two class Gaussians;
(b) Decision boundary of a logistic regression model trained on the
dataset; (c) Trained model’s CrossEntropy loss on training instances;
Decision boundary of logistic regression models trained on 35 instances
chosen (d) randomly (e) using Least Confidence method [6] (f) using
Max-Entropy method [7]; Best viewed in color. Labeled instances are
emphasized for clarity. 25

xii

3.2 Performance of each active learning query method with different initial
pool sampling strategies on CIFAR-10. There are 8 graphs shown,
one for each active querying method as mentioned in the graph titles.
Each colored line in the graph corresponds to an initial pool sampling
method, as shown in the legend. 29

3.3 AL Performance of each active learning query method with different
initial pool sampling strategy on CIFAR-100. 30

3.4 Tiny ImageNet: Our initial pools perform no better than random ini-
tial pools across all AL configurations. 31

3.5 MNIST. 33
3.6 CIFAR-100: Class distribution of initial pools picked by various meth-

ods. Note the apparent class imbalance in the initial pool picked by
VAE. Is this the reason for the performance gain? 33

3.7 CIFAR-10: Initial pools visualized using t-SNE. 34
3.8 CIFAR-10: In low budget AL setting, only VAE initial pools show

marginal performance gains over random initial pools. 35
3.9 Long-Tail CIFAR-10: Our unsupervised sampling methods (SCAN

and K-Means), motivated by this imbalance setting, did not improve
LC, ME, DBAL query method performances. In the long run, VAE-
based initial pools show marginal performance gains over random ini-
tial pools. 35

4.1 Comparison of test-set accuracy and PGD accuracy of NAS and hand-
crafted architectures on CIFAR-10 dataset. Bubble size represents the
number of parameters . 39

4.2 Left: Standard procedure for building architectures from DARTS
search space; Right: Procedure for building ensembles using DARTS
search space. 12, 6, 2 can be replaced with any values that sum to 20. 43

4.3 Comparison of robustness and clean accuracy of different architectures;
As the difficult of the task or the scale of the dataset increases hand-
crafted architectures are more robust; (best performance is indicated
by diamond symbol) . 47

4.4 Comparison of PGD accuracy and Parameter count across different
family of architectures . 50

xiii

5.1 Illustration of AdaSkips for two images of same class from Stanford-
Dogs [8] dataset. AdaSkips determine which skip connections to use
and assigns a weight for each pre-trained feature map via skip connec-
tions. 55

5.2 Models with AdaSkips start better and improve with train-
ing; Qualitative comparison of validation accuracy of WideResNet-50
on datasets that have minimal class overlap with ImageNet 66

5.3 Models with AdaSkips are better even when the labelled
data is limited. Qualitative visualisation to show the effectiveness
of AdaSkips with varying amounts of labelled data 68

5.4 Despite not imposing a specific sparsity schema, the hyper-
network learns to select input-conditioned skip connections.
Qualitative visualisation of the weights (average) learned by the hy-
pernetwork for all the test samples of FGVC-Aircraft and Stanford
Cars datasets, we use ResNeXt-50 as the base network. 69

xiv

List of Algorithms

1 MMTOD: Multi-modal Thermal Object Detection Methodology 11

2 AdaSkips for Transfer Learning . 60

xv

List of Publications

1. Chaitanya Devaguptapu, Ninad Akolekar, Manuj Sharma, V. Balasubra-
manian. ”Borrow from Anywhere: Pseudo Multi-modal Object Detection in
Thermal Imagery,” The IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops, June 2019.

2. Chaitanya Devaguptapu, Ninad Akolekar, Manuj Sharma, V. Balasubrama-
nian., A Methodology for Transfer of Knowledge from Data-Rich Domains for
Thermal Image Processing, Indian Patent Application No. 202011032663 (filed
in Aug 2020)

3. Akshay Chandra L*, Sai Vikas Desai*, Chaitanya Devaguptapu*, V. Bal-
asubramanian. ”On Initial Pools for Deep Active Learning”, Preregistration
Workshop at NeurIPS 2020 (PMLR Volume 148) (* – denotes equal contribu-
tion)

4. Chaitanya Devaguptapu, Devansh Agarwal, Gaurav Mittal, Pulkit Gopalani,
V. Balasubramanian; Balasubramanian, On Adversarial Robustness: A Neural
Architecture Search Perspective, Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2021

5. Chaitanya Devaguptapu, Samarth Sinha, V. Balasubramanian, Animesh
Garg, On the Use of Skip Connections for Transfer Learning (under review at
ECCV-2022)

1

Chapter 1

Introduction and Background

1.1 The Need for Data-Efficient Neural Networks
Deep Neural networks, often abbreviated as DNNs, have helped achieve state-of-the-
art (SoTA) performance on many standard benchmark tasks in computer vision [9],
natural language processing [10], and speech recognition [11]. With the advent of Deep
Convolutional Neural Networks (CNNs), [12], the performance of various computer
vision tasks such as image classification, object detection, and object segmentation
has significantly increased. DNNs are good at capturing patterns that solve complex
problems and have a wide range of interesting applications like autonomous driving,
medical diagnosis, precision agriculture, and robotic vision, to name a few. However,
these models require large-scale, well-annotated datasets along with a reasonable
amount of compute to perform reasonably well. This work presents the directions
we have explored to make DNNs more data-efficient. Our work not only focuses on
decreasing the amount of data and compute that is required to train DNNs but also
focuses on making large DNNs more robust and efficient.

1.2 A Multi-Faceted view of Efficiency
In the following sections, we present a multi-faceted view of efficiency. We view data
efficiency from perspectives of modality, data annotation, adversarial robustness, and
ease of transfer.

2

1.2.1 Efficiency: Modality Perspective
Object Detection in Thermal Imagery: As indicated by the recent fatalities
[13], the current sensors in self-driving vehicles with level 2 and level 3 autonomy
(lacking thermal imaging) do not adequately detect vehicles and pedestrians. Pedes-
trians are especially at risk after dark when 75% of the 5,987 U.S. pedestrian fatalities
occurred in 2016 [14]. Thermal sensors perform well in such conditions where auton-
omy level 2 and level 3 sensor-suite technologies are challenged. As is well-known,
thermal IR cameras are relatively more robust to illumination changes and can thus
be useful for deployment both during the day and night. In addition, they are low-
cost, non-intrusive, and small in size. Consequently, thermal IR cameras have become
increasingly popular in applications such as autonomous driving recently, as well as
in other mainstream applications such as security and military surveillance opera-
tions. Detection and classification of objects in thermal imagery is thus an important
problem to be addressed and invested in to achieve successes that can be translated
to the deployment of such models in real-world environments.

Although object detection has always remained an important problem in com-
puter vision, most of the efforts have focused on detecting humans and objects in
standard RGB imagery. Object detection performance in the RGB domain has been
significantly improved using region-based methods, such as the R-CNN [15], Fast R-
CNN [16], and Faster R-CNN [17], and regression-based methods such as YOLO [18].
These object detection methods rely, however, on architectures and models that have
been trained on large-scale RGB datasets such as ImageNe [19]t, PASCAL-VOC[20],
and MS-COCO[21]. A relative dearth of such publicly available large-scale datasets
in the thermal domain restricts the achievement of an equivalent level of success of
such frameworks on thermal images.

1.2.2 Efficiency: Data Annotation Perspective
With the success of convolutional neural networks (CNNs) in supervised learning on
a wide range of tasks, several large and high-quality datasets have been developed.
However, data annotation remains a key bottleneck for deep learning practitioners.
Depending on the task, data annotation cost may vary from a few seconds to a few
hours per sample and, in many real-world scenarios, supervision of domain experts is
necessary ([22]).

3

Active Learning: Active learning (AL) methods aim to alleviate the data annota-
tion bottleneck by labeling only a subset of the most informative samples from a large
pool of unlabeled data. Various query methods ([23, 24, 25, 26, 27, 28]) have been re-
cently proposed for AL in the context DNN models. Since DNN models require large
amounts of labeled data to learn, Deep AL is a key and important area of research.
AL has been well-explored in the context of traditional (shallow) machine learning
methods ([29]). Generally, before starting the AL cycles, a small randomly chosen
subset of a dataset (with size around 1-10% of the entire dataset), typically called
the initial pool, is labeled first to train an initial model. after which various sampling
strategies are used to pick which samples to label from the unlabelled pool of data,
then the samples are sent to an oracle for acquiring the labels and the model is again
trained with the entire pool of labeled samples. The cycle of sample-label-train is
repeated multiple times depending on the annotation budget.

1.2.3 Efficiency: Architecture and Robustness Perspective
The choice of neural network architecture and its complex topology plays a crucial role
in improving the performance of several deep learning based applications. However,
in most of the cases, these architectures are typically designed by experts in an ad-
hoc, trial-and-error fashion. Neural Architecture Search (NAS) automates the design
of neural network architectures for a given task.

Neural Architecture Search: Neural Architecture Search (NAS) [30] alleviates
the pain of hand designing these architectures by partially automating the process of
finding the right topology that can result in best-performing architectures. Since the
work by [30], there has been much interest in this space. Many researchers have come
up with unique approaches [31, 32, 33] to improve the performance besides decreasing
the computational cost. Current SoTA(state-of-the-art) on image classification and
object detection [34, 35], are developed using NAS, which shows how important a role
NAS plays in solving standard learning tasks, especially in computer vision.

Adversarial Examples and Robustness: Adversarial examples, in general, refer
to samples that are imperceptible to the human eye but can fool a deep classifier
to predict a non-true class with high confidence. Adversarial examples can result in
degraded performance even in the presence of perturbations too subtle to be per-
ceived by humans. Adversarial robustness is defined as the accuracy of a model when
adversarial examples (images perturbed with some imperceptible noise) are provided

4

as input. Adversarial examples have the potential to be dangerous. [36] discusses an
example where attackers could target autonomous vehicles by using stickers or paint
to create an adversarial stop sign that the vehicle could interpret as a yield or other
sign.

1.2.4 Efficiency: Transfer Learning Perspective
Deep neural network models are trained typically on large-scale datasets which are
annotated for a specific task at hand. However, all real-world application settings do
not have similar scales of annotated data available and hence need mechanisms for
efficient feature transfer and reuse.

Transfer Learning: Transfer learning (TL) provides a solution for training deep
neural networks on datasets that are relatively much smaller than the dataset on which
the models were pre-trained. While TL is widely adopted across several real-world
applications and domains where it is difficult to construct large-scale well-annotated
datasets, it is often unclear how to best transfer the knowledge from the source dataset
to a target dataset.

Skip Connections: Skip connections introduced in ResNets [37] and Highway Net-
works [38] allow a path to pass information between intermediate layers of a neural
network and help in avoiding problems such as vanishing gradients by turning the
model into an implicit ensemble with different paths [39].

5

Chapter 2

Improving Object Detection in
Thermal imagery

2.1 Borrowing from Rich Domains like RGB
This chapter presents a pseudo multi-modal framework we propose for object detec-
tion in the thermal domain. The proposed framework helps borrow complex high-level
features from the RGB domain to improve object detection in the thermal domain. It
does not need paired examples from two modalities and can borrow from any large-
scale RGB dataset available for object detection and does not need the collection of a
synchronized multi-modal dataset. This setting makes this problem challenging and
more useful for an application perspective. The proposed framework also overcomes
the problem of inadequacy of training examples in the thermal domain. At a high-
level, the proposed framework consists of two branches, one branch is pre-trained on
large-scale RGB datasets (such as PASCAL-VOC or MS-COCO) and finetuned using
a visual RGB input that is obtained using an image-to-image (I2I) translation frame-
work from a given thermal image (and hence the name ‘pseudo multi-modal’). The
second branch follows the standard training process on a relatively smaller thermal
dataset.

2.2 Object Detection methods for Thermal Imagery
Detection and classification of objects in the thermal imagery has been an active area
of research in computer vision [40, 41, 42, 2], especially in the context of military
and surveillance[43]. There has been a significant amount of work on classifying and

6

detecting people and objects in thermal imagery using standard computer vision and
machine learning models, even before deep learning became popular. Bertozzi et
al. [44] proposed a probabilistic template-based approach for pedestrian detection in
far infrared (IR) images. They divided their algorithm into three parts: candidate
generation, candidate filtering and validation of candidates. One main weakness of
this approach is that it assumes the human is hotter than the background which may
not be the case in many real-world scenarios. Davis et al. [45] proposed a two-stage
template-based method to detect people in widely varying thermal imagery. To locate
the potential person locations, a fast screening procedure is used with a generalized
template and then an AdaBoost ensemble classifier is used to test the hypothesized
person locations. Kai et al. [46] proposed a local feature-based pedestrian detector
on thermal data. They used a combination of multiple cues to find interest points in
the images and used SURF [47] as features to describe these points. A codebook is
then constructed to locate the object center. The challenge of this detector is whether
a high performance can be achieved when local features are not obvious.

While these efforts have shown good performance for IR image classification and
detection tasks over a small number of objects, they have been outperformed in recent
years by deep learning models that enable more descriptive features to be learned.
With the increase in popularity of deep neural networks, several methods have been
proposed for applying deep learning methods to thermal images. Peng et al. [48]
proposed a Convolutional Neural Network (CNN) for face identification in near IR
images. Their CNN is a modification of GoogLeNet but has a more compact structure.
Lee et al. [49] designed a lightweight CNN consisting of two convolutional layers and
two subsampling layers for recognizing unsafe behaviors of pedestrians using thermal
images captured from moving vehicles at night. They combined their lightweight CNN
with a boosted random forest classifier. Chevalier et al. [50] proposed LR-CNN for
automatic target recognition which is a deep architecture designed for classification
of low-resolution images with strong semantic content. Rodger et al. [51] developed
a CNN trained on short-to-midrange high resolution IR images containing six object
classes (person, land vehicle, helicopter, aeroplane, unmanned aerial vehicle and false
alarm) using an LWIR sensor. This network was successful at classifying other short to
mid-range objects in unseen images, although it struggled to generalize to long range
targets. Abbott et al. [52] used a transfer learning approach with the YOLO [18]
framework to train a network on high-resolution thermal imagery for classification
of pedestrians and vehicles in low-resolution thermal images. Berg et al. [53][54]
proposed an anomaly-based obstacle detection method using a train-mounted thermal

7

camera. Leykin et al. [55] proposed a fusion tracker and pedestrian classifier for
multispectral pedestrian detection. Proposals for performing detection are generated
using background subtraction and evaluated using periodic gait analysis.

Among efforts that use a multimodal approach, Wagner et al. [56] applied Ag-
gregated Channel Features (ACF) and Boosted Decision trees (BDT) for proposal
generation and classified these proposals with a CNN, which fuses Visual and IR
information. Choi et al. [57] uses two separate region proposal networks for both Vi-
sual and IR images and evaluates the proposals generated by both the networks with
Support Vector Regression on fused deep features. The efforts closest to our work
are that of Konig et al. [58] and Liu et al. [59], both of which propose a multi-modal
framework that combines RGB and thermal information in a Faster-RCNN architec-
ture by posing it as a convolutional network fusion problem. However, all of these
multimodal efforts assume the availability of a dataset with paired training examples
from the visual and thermal domain. On the other hand, our work assumes only the
presence of thermal imagery and seeks to leverage the use of publicly available RGB
datasets (which may not be paired with the thermal dataset) to obtain significant
improvement in thermal object detection performance.

2.3 Multi-Modal Thermal Object Detector (MM-
TOD)

Our overall proposed methodology for ‘pseudo multi-modal’ object detection for ther-
mal images is summarized in Figure 2.1. The key idea of our methodology is to borrow
knowledge from data-rich domains such as visual (RGB) without the explicit need for
a paired multimodal dataset. We achieve this objective by leveraging the success of
recent image-to-image translation methods [5, 4] to automatically generate a pseudo-
RGB image from a given thermal image, and then propose a multimodal Faster R-
CNN architecture to achieve our objective. Image-to-Image translation models aim
to learn the visual mapping between a source domain and target domain. Learn-
ing this mapping becomes challenging when there are no paired images in source
and target domains. Recently, there have been noteworthy efforts on addressing this
problem using unpaired images [5, 60, 61, 4, 62, 63, 64]. While one could use any
unsupervised image-to-image translation framework in our overall methodology, we
use CycleGAN[5] and UNIT[4] as I2I frameworks of choice in our work, owing to their
wide use and popularity. We begin our discussion with the I2I translation frameworks

8

RPN
RoI

Pooling

!"#$%

Conv+BN+ReLU

I2
I F

ra
m

ew
ork

,

Therm
al t

o R
GB

!&'(

Thermal Base -!&)(

RGB Base -!(*+

ResNet Block

ResNet Block

ResNet Block

Conv+BN+ReLU

ResNet Block
ResNet Block

ResNet Block

Region Proposal Network

Proposals

w

h

,
16 x

ℎ
16 1 1024

,
16 x

ℎ
16 1 1024

,
16 x

ℎ
16 1 1024

Foreground/Background

score

Bounding box

regression coefficients.

Classifica

tion layer

Crop

corresponding

regions from

feature map

Feature map passed

into RPN

Cropped RoIs from

feature map

Layers initialized with

Thermal weights

Layers initialized with

RGB weights

56

5̂6
!8#9

Figure 2.1: Adaptation of proposed Mutli-modal framework for Faster-RCNN

used in this work.

Unpaired Image-to-Image Translation: CycleGAN [5] is a popular unpaired
image-to-image translation framework that aims to learn the mapping functions
F : X → Y and G : Y → X where X and Y are source and target domains re-
spectively. It maps the images onto two separate latent spaces and employs two
generators GX→Y ,GY→X and two discriminators DX ,DY . The generator GX→Y at-
tempts to generate images ŷi that look similar to images from domain Y , while Dy

aims to distinguish between the translated samples ŷi and real samples yi. This con-
dition is enforced using an adversarial loss. To reduce the space of possible mapping
functions, a cycle-consistency constraint is also enforced, such that a source-domain
image xi when transformed into target domain (ŷi) and re-transformed back to source
domain (x̂i) will ensure in x̂i and xi will belong to the same distribution. For more
details, please see [5].

Unlike CycleGAN [5], UNIT [4] tackles the unpaired image-to-image translation
problem assuming a shared latent space between both the domains. It learns the joint
distribution of images in different domains using the marginal distribution in indi-
vidual domains. The framework is based on variational autoencoders VAE1,VAE2

and generative adversarial networks GAN1,GAN2 with a total of six sub-networks
including two image encoders E1, E2, two image generators G1,G2 and two adversar-
ial discriminators D1,D2. Since they assume a shared latent space between the two
domains, a weight sharing constraint is enforced to relate the two VAEs. Specifi-
cally, weight sharing is done between the last few layers of encoders E1, E2 that are
responsible for higher level representations of the input images in the two domains

9

and the first few layers of the image generators G1,G2 responsible for decoding the
high-level representations for reconstructing the input images. The learning problems
of VAE1,VAE2,GAN1,GAN2 for image reconstruction, image translation and cyclic
reconstruction are jointly solved. For more information, please see [4].

In case of both CycleGAN and UNIT, the trained model provides two generators
which perform the translation between source and target domains. In our case, we
use the generator which performs the Thermal-to-RGB translation, which is given by
G : X → Y in case of a CycleGAN and G1 in case of UNIT (we used Thermal as
the source domain, and RGB as the target domain while training these models). We
refer to the parameters of these generators as WT2R in our methodology.

Pseudo Multi-modal Object Detection: As shown in Figure 2.1, our object
detection framework is a multi-modal architecture consisting of two branches, one for
the thermal image input and the other for the RGB input. Each branch is initialized
with a model pre-trained on images from that domain (specific details of implementa-
tion are discussed in Section 2.4). To avoid the need for paired training examples from
two modalities but yet use a multi-modal approach, we use an image-to-image (I2I)
translation network in our framework. During the course of training, for every ther-
mal image input, we generate a pseudo-RGB using WT2R and pass the pseudo-RGB
and Thermal to the input branches (parametrized by WRGB and WTIR respectively).
Outputs from these branches are stacked and passed through a 1 × 1 convolution
(Wconv) to learn to combine these features appropriately for the given task. The
output of this 1 × 1 convolution is directly passed into the rest of the Faster-RCNN
network (denoted by Wtop). We use the same Region Proposal Network (RPN) loss
as used in Faster-RCNN, given as follows:

L({pi}, {ti}) =
1

Ncls

∑

i

Lcls(pi, p
∗
i) + λ

1

Nreg

∑

i

p∗iLreg(ti, t
∗
i)

where i is the index of an anchor, pi is the predicted probability of anchor i being an
object, p∗i is the ground truth, ti represents the coordinates of the predicted bounding
box, t∗i represents the ground truth bounding box coordinates, L is log loss, R is the
robust loss function (smooth L1) as defined in [16], and λ is a hyperparameter. We
use the same multi-task classification and regression loss as used in Fast-RCNN [16]
at the end of the network.

While the use of existing I2I models allow easy adoption of the proposed method-
ology, the images generated from such I2I frameworks for thermal-to-RGB transla-

10

tion are perceptually far from natural RGB domain images (like MS-COCO[21] and
PASCAL-VOC [20]), as shown in Figure 2.3. Therefore, during the training phase
of our multi-modal framework, in order to learn to combine the RGB and thermal
features in a way that helps improve detection, we also update the weights of the I2I
generator WT2R. This helps learn a better representation of the pseudo-RGB image
for borrowing relevant features from the RGB-domain, which we found to be key in
improving detection in the thermal domain. The proposed methodology provides a
fairly simple strategy to improve object detection in the thermal domain. We refer
to the proposed methodology as MMTOD (Multimodal Thermal Object Detection)
hereafter. Our algorithm for training is summarized in Algorithm 1. More details on
the implementation of our methodology are provided in Section 2.4.

Algorithm 1: MMTOD: Multi-modal Thermal Object Detection Method-
ology
1 Input: Thermal image training data: {(ci, yi)}mi=1; Generator of I2I

framework: WT2R; Pre-trained RGB base network: WRGB; Pre-trained
thermal base network: WTIR, Pre-trained thermal top network Wtop;
Randomly initialised 1x1 conv weights: Wconv; Number of epochs:
num_epochs; Loss function: L(.)

2 Output: Trained MMTOD model, F(.)
3 for num_epochs do
4 for ci, i = 1, · · · ,m do
5 Generate a pseudo-RGB image ĉi using WT2R.
6 Generate feature maps by passing ci and ĉi to base networks WTIR

and WRGB respectively
7 Stack the feature maps and use Wconv to get 1× 1 conv output
8 Pass the 1x1 conv output to Wtop

9 Update weights: WRGB,WTIR,Wtop,Wconv,WT2R by minimizing L of
the object detection framework.

10 end
11 end

2.4 Experiments and Analysis

2.4.1 Datasets and Experimental Setup
Datasets: We use the FLIR ADAS [1] dataset and the KAIST Multispectral Pedes-
trian dataset [2] for our experimental studies. FLIR ADAS [1] consists of a total of
9,214 images with bounding box annotations, where each image is of 640 × 512 res-

11

olution and is captured using a FLIR Tau2 camera. 60% of the images are collected
during daytime and the remaining 40% are collected during night. While the dataset
provides both RGB and thermal domain images (not paired though), we use only the
thermal images from the dataset in our experiments (as required by our method).
For all the experiments, we use the training and test splits as provided in the dataset
benchmark, which contains the person (22,372 instances), car (41,260 instances), and
bicycle (3,986 instances) categories.

The KAIST Multispectral pedestrian benchmark dataset [2] contains around 95,000
8-bit day and night images (consisting of only the Person class). These images are col-
lected using a FLIR A35 microbolometer LWIR camera with a resolution of 320×256

pixels. The images are then upsampled to 640 × 512 in the dataset. Sample images
from the dataset are shown in Figure 2.2. Though the KAIST dataset comes with
fully aligned RGB and Thermal, we choose not to use the RGB images as our goal to
improve the detection in the absence of paired training data. Some example images
from both the datasets are shown in Figure 2.2.

Figure 2.2: Row 1 & Row 2: Example images from FLIR [1] ADAS dataset, Row 3:
Example Images from KAIST [2] dataset

Our methodology relies on using publicly available large-scale RGB datasets to im-
prove thermal object detection performance. For this purpose, we use RGB datasets
with the same classes as in the aforementioned thermal image datasets. In particular,
we perform experiments using two popular RGB datasets namely, PASCAL VOC [20]
and MS-COCO [21]. In each experiment, we pre-train an object detector on either
of these datasets and use these parameters to initialise the RGB branch of our mul-
timodal framework. We also compare the performance of these two initializations in

12

our experiments. In case of thermal image datasets, an end-to-end object detector is
first trained on the dataset and used to initialize the thermal branch of our framework.
We use mean Average Precision (mAP) as the performance metric, as is common for
the object detection task.

Baseline: A Faster-RCNN trained in a fully supervised manner on the thermal
images from the training set is used as the baseline method for the respective experi-
ments in our studies. We followed the original paper [17] for all the hyperparameters,
unless specified otherwise. The FLIR ADAS dataset [1] also provides a benchmark
test mAP (at IoU of 0.5) of 0.58 using the more recent RefineDetect-512 [65] model.
We show that we beat this benchmark using our improved multi-modal Faster-RCNN
model.

Image-to-Image Translation (IR-to-RGB): For our experiments, we train two
CycleGAN models: one for FLIR ↔ RGB which uses thermal images from FLIR [1]
and RGB images from PASCAL VOC [20], and another for KAIST ↔ RGB which
uses thermal images from KAIST [2] and RGB images from PASCAL VOC [20]. We
use an initial learning rate of 1e-5 for the first 20 epochs, which is decayed to zero over
the next 20 epochs. The identity mapping is set to zero, i.e., the identity loss and the
reconstruction loss are given equal weightage. The other hyperparameters of training
are as described in [5]. For training of the UNIT framework, all the hyperparameters
are used as stated in the original paper, without any alterations. Since UNIT takes
a long time to train (7 to 8 days on an NVIDIA P-100 GPU), we trained it only
for FLIR ↔ RGB, so the experiments on KAIST are performed using CycleGAN
only. Our variants are hence referred to as MMTOD-CG (when I2I is CycleGAN)
and MMTOD-UNIT (when I2I is UNIT) in the remainder of the text.

We use the same metrics as mentioned in CycleGAN [5] and UNIT [4] papers
for evaluating the quality of translation. In an attempt to improve the quality of
generated images in CycleGAN [5], we tried adding feature losses in addition to cycle
consistency loss and adversarial loss. However, this did not improve the thermal to
visual RGB translation performance. We hence chose to finally use the same loss as
mentioned in [5].

Training our Multi-modal Faster-RCNN: Our overall architecture (as in Fig-
ure 2.1) is initialized with pre-trained RGB and Thermal detectors as described in
Section 2.3. Since our objective is to improve detection in thermal domain, the region

13

proposal network (RPN) is initialized with weights pre-trained on thermal images.
The model is then trained on the same set of images on which the thermal detector
was previously pre-trained. The I2I framework generates a pseudo-RGB image cor-
responding to the input thermal image. The thermal image and the corresponding
pseudo-RGB image are passed through the branches of the multi-modal framework
to obtain two feature maps of 1024 dimension each, as shown in figure 2.1. These two
feature maps are stacked back-to-back and passed through a 1×1 convolution, which
is then passed as input to the Region Proposal Network (RPN). RPN produces the
promising Regions of Interest (RoIs) that are likely to contain a foreground object.
These regions are then cropped out of the feature map and passed into a classifica-
tion layer which learns to classify the objects in each ROI. Note that as mentioned
in Section 2.3, during the training of the MMTOD framework, the weights of the I2I
framework are also updated which allows it to learn a better representation of the
translated image for improved object detection in thermal domain. We adapted the
Faster-RCNN code provided at [66] for our purpose. The code for the CycleGAN and
UNIT was taken from their respective official code releases[5, 67, 4]. Our code will
be made publicly available for further clarifications.

Experimental Setup: To evaluate the performance of the proposed multi-modal
framework, the following experiments are carried out:

• MMTOD-CG with RGB branch initialized by PASCAL-VOC pre-trained de-
tector, thermal branch initialized by FLIR ADAS pre-trained detector

• MMTOD-UNIT with RGB branch initialized by PASCAL-VOC pre-trained de-
tector, thermal branch initialized by FLIR ADAS pre-trained detector

• MMTOD-CG with RGB branch initialized by MS-COCO pre-trained detector,
thermal branch initialized by FLIR ADAS pre-trained detector

• MMTOD-UNIT with RGB branch initialized by MS-COCO pre-trained detec-
tor, thermal branch initialized by FLIR ADAS pre-trained detector

• MMTOD-CG with RGB branch initialized by PASCAL-VOC pre-trained de-
tector, thermal branch initialized by KAIST pre-trained detector

• MMTOD-CG with RGB branch initialized by COCO pre-trained detector, ther-
mal branch initialized by KAIST pre-trained detector

2.4.2 Results
IR-to-RGB Translation Results: Figure 2.3 shows the results of CycleGAN and
UNIT trained for Thermal ↔ RGB translation. As mentioned in Section 2.3, the gen-

14

erated pseudo-RGB images are perceptually far from natural domain images. This
can be attributed to the fact that the domain shift between RGB and Thermal do-
mains is relatively high compared to other domains. In addition, RGB images have
both chrominance and luminance information, while thermal images just have the
luminance part which makes estimating the chrominance for RGB images a difficult
task. However, we show that using our method, these generated images add value to
the detection methodology.

Figure 2.3: Row 1: Thermal images from FLIR ADAS[1] dataset; Row 2: Translations
generated using UNIT[4]; Row 3: Translations generated using CycleGAN[5].

Thermal Object Detection Results: Tables 2.1 and 2.2 show the comparison of
AP for each class and the mAP of our framework against the baseline detector when
trained on FLIR ADAS and KAIST datasets respectively. (Note that the KAIST
dataset has only one class, the Person.) We observe that in all the experiments, our
framework outperforms the baseline network across all the classes.

AP across each class
Method Bicycle Person Car mAP
Baseline 39.66 54.69 67.57 53.97

Framework RGB Branch

MMTOD-UNIT
MSCOCO 49.43 64.47 70.72 61.54

Pascal VOC 45.81 59.45 70.42 58.56

MMTOD-CG
MSCOCO 50.26 63.31 70.63 61.40

Pascal VOC 43.96 57.51 69.85 57.11
Table 2.1: Performance comparison of proposed methodology against baseline on
FLIR [1]

15

Method mAP
Baseline 49.39
Framework RGB Branch

MMTOD-CG
MS-COCO 53.56
Pascal VOC 52.26

Table 2.2: Performance comparison of proposed methodology against baseline on
KAIST [2]

In case of FLIR, we observe that initializing the RGB branch with MS-COCO
obtains better results than those with PASCAL-VOC. This can be attributed to the
fact that MS-COCO has more instances of car, bicycle, and person as compared to
PASCAL VOC. Also, experimental results show that employing UNIT as the I2I
framework achieves better performance than CycleGAN. Our framework with MS-
COCO initialization and UNIT for I2I translation results in an increase in mAP by at
least 7 points. In particular, as mentioned earlier, the FLIR ADAS dataset provides
a benchmark test mAP (at IoU of 0.5) of 0.58 using the more recent RefineDetect-512
[65] model. Our method outperforms the benchmark despite using a relatively older
object detection model such as the Faster-RCNN.

Figure 2.4: Qualitative results of detections on the FLIR ADAS dataset. Row 1:
Baseline Row 2: MMTOD

As shown in Table 2.2, our improved performance on the KAIST dataset shows
that although this dataset has more examples of the ’Person’ category than the RGB
dataset used such as PASCAL-VOC, our framework still improves upon the perfor-
mance of the baseline method. This allows us to infer that the proposed framework
can be used in tandem with any region-CNN based object detection method to im-
prove the performance of object detection in thermal images. On average our frame-

16

Figure 2.5: Qualitative results of detections on the KAIST. Row 1: Baseline. Row 2:
MMTOD

Figure 2.6: Qualitative comparison: Left: Detection with single mode Faster-RCNN;
Middle: Detection using the proposed method; Right: Annotated Ground Truth as
provided in FLIR dataset [1].
work takes 0.11s to make detections on a single image, while the baseline framework
takes 0.08s. Our future directions of work include improving the efficiency of our
framework while extending the methodology to other object detection pipelines such
as YOLO and SSD. Figures 2.4, 2.5, 4.1 show qualitative results on FLIR and KAIST
datasets.

2.5 Discussion and Ablation Studies
Learning with limited examples: We also conducted studies to understand the
capability of our methodology when there are limited samples in the thermal domain.

17

Number of Instances
Dataset Car Person Bicycle
FLIR 41,260 22,372 3,986
FLIR (1/2) 20,708 11,365 2,709
FLIR (1/4) 10,448 5,863 974

Table 2.3: Statistics of the datasets we used for our experiments.

Our experiments on the FLIR ADAS dataset showed that our framework outper-
forms the current state-of-the-art detection performance using only half the training
examples. Moreover, our experiments show that using only a quarter of the training
examples, our framework outperforms the baseline on the full training set. Table 2.3
presents the statistics of the dataset used for this experiment. Note that the test set
used in these experiments is still the same as originally provided in the dataset.

We perform the same set of experiments (as discussed in Section 2.4) on FLIR(1/2)
and FLIR(1/4) datasets. Tables 2.4 and 2.5 present the results.

AP across each class
Method Bicycle Person Car mAP
Baseline (FLIR) 39.66 54.69 67.57 53.97
Baseline (FLIR-1/2) 34.41 51.88 65.04 50.44

Framework RGB Branch

MMTOD-UNIT
MSCOCO 49.84 59.76 70.14 59.91

Pascal VOC 45.53 57.77 69.86 57.72

MMTOD-CG
MSCOCO 50.19 58.08 69.77 59.35

Pascal VOC 40.17 54.67 67.62 54.15
Table 2.4: Performance comparison of proposed methodology against baseline on
FLIR (1/2)

Table 2.4 shows the baselines for training the Faster-RCNN on the complete FLIR
training dataset as well as FLIR (1/2). We observe that both MMTOD-UNIT and
MMTOD-CG trained on FLIR(1/2) outperform both the baselines, even when Faster-
RCNN is trained on the entire training set.

Similarly, Table 2.5 shows the baselines for training the Faster-RCNN on the
complete FLIR training dataset as well as FLIR (1/4). Once again, we observe that
both MMTOD-UNIT and MMTOD-CG trained on FLIR(1/4) outperform both the
baselines, even when Faster-RCNN is trained on the entire training set. In other
words, the MMTOD framework requires only a quarter of the thermal training set
to surpass the baseline accuracy achieved using the full training set. The results

18

AP across each class
Method Bicycle Person Car mAP
Baseline(FLIR) 39.66 54.69 67.57 53.97
Baseline(FLIR-1/4) 33.35 49.18 60.84 47.79

Framework RGB Branch
MMTOD-UNIT MSCOCO 44.24 57.76 69.77 57.26

Pascal VOC 35.23 54.71 67.83 52.59

MMTOD-CG MSCOCO 41.29 57.08 69.10 55.82
Pascal VOC 35.02 51.62 66.09 50.91

Table 2.5: Performance comparison of proposed methodology against baseline on
FLIR (1/4)

clearly demonstrate the proposed framework’s ability to learn from fewer examples.
This shows that our framework effectively borrows features from the RGB domain
that help improve detection in the thermal domain. This is especially useful in the
context of thermal and IR images, where there is a dearth of publicly available large-
scale datasets.

Effect of Image Resolution: To understand the effect of image resolution on
object detection performance, we repeated the above experiments were conducted
using subsampled images of the FLIR ADAS dataset. Table 2.6 presents these results
for 400 × 400 input images. We observe that our multi-modal framework improves
the object detection performance significantly even in this case. Our future work will
involve extending our work to images of even lower resolutions.

AP across each class
Dataset Method Bicycle Person Car mAP

FLIR
Baseline 29.25 43.13 58.83 43.74

P-VOC + CycleGAN 39.42 52.75 62.05 51.41

FLIR (1/2)
Baseline 23.31 40.82 56.25 40.13

P-VOC + CycleGAN 33.32 48.32 60.87 47.50

FLIR (1/4)
Baseline 18.81 35.42 52.82 35.68

P-VOC + CycleGAN 30.63 45.45 60.32 45.47
Table 2.6: Performance comparison of proposed methodology against baseline on
FLIR 400× 400 images

19

Missed Detections: We tried to analyze the failure cases of the proposed method-
ology, by studying the missed detections. Some examples of these missed detections
are shown in figure 2.7. We infer that MMTOD finds object detection challenging
when: (i) the objects are very small and located far from the camera; (ii) two objects
are close to each other, and are detected as a single object; and (iii) there is heavy
occlusion and crowd. Our future efforts will focus on addressing these challenges.

Figure 2.7: Some examples of missed detections, Red: Predictions using MMTOD,
Green: Ground Truth

2.6 Conclusion
We propose a novel multi-modal framework to extend and improve upon any Region-
CNN-based object detector in the thermal domain by borrowing features from the
RGB domain, without the need of paired training examples. We evaluate the perfor-
mance of our framework applied to a Faster-RCNN architecture in various settings
including the FLIR ADAS and KAIST datasets. We demonstrate that our framework
achieves better performance than the baseline, even when trained only on quarter of
the thermal dataset. The results suggest that our framework provides a simple and
straightforward strategy to improve the performance of object detection in thermal
images.

20

Chapter 3

On Initial Pools for Deep Active
Learning

3.1 Understanding the role of Initial Pool in Deep
AL

Across all Active Learning efforts so far, to the best of our knowledge, the initial
pool is always sampled randomly and labeled ([23, 24, 25, 26, 27, 6]). This initial
pool design strategy has generally worked well for AL in traditional/shallow ML
models. However, the success of AL in DNNs has not been convincing yet, especially
when such models are trained on large-scale datasets. On one hand, while there
have been several encouraging newly proposed deep AL methods, deeper analysis
of those methods in ([68, 69, 70]) show that AL struggles to outperform random
sampling baselines when slight changes are made to either datasets (class-imbalance)
or training procedures (data augmentation, regularization, etc.). Interestingly, to the
best of our knowledge, the design of better initial labeled pools received no attention
by the deep AL community. Considering the tremendous success of self-supervised
learning methods in recent years ([71, 72, 73, 74, 75, 76, 77]), we ask the question if
choosing an initial labeled pool intelligently can improve AL performance.

This chapter focuses on discussing an empirical study we perform on existing deep
AL methods while using initial labeled pools, sampled using methods other than
random sampling. To investigate the effect of intelligently sampled initial labeled
pools on deep AL methods, we propose two sampling techniques, leveraging state-
of-the-art self-supervised learning methods and well-known clustering methods. In
particular, we propose the following ways of choosing the initial pool:

21

• Sample datapoints that a state-of-the-art self-supervised model finds challeng-
ing, as observed using the trained model’s loss on the data.

• Cluster the unlabeled pool first and then perform sampling across each cluster.
Equal proportions of datapoints are sampled from each cluster to make sure the
chosen samples span the entire dataset.

We hypothesize that AL methods (we focus our efforts on deep AL methods)
can benefit from more intelligently chosen initial pools, thus eventually reducing an-
notation cost in creation of datasets. Our empirical study will seek to address the
following specific questions:

• Can pool-based deep AL methods leverage design of intelligently sampled initial
pools to improve AL performance?

• Can we exploit latest advancements in self-supervised learning to boost deep
AL performance with no additional labeling cost?

• Are some initial pools better than others? What makes an initial pool good?

In a realistic training setting with measures to avoid overfitting (i.e. regulariza-
tion, batch norm, early stopping), we hypothesize that the generalization error of AL
models starting with our initial pools will be lower than those of AL models starting
with random initial pools, across AL cycles. However, as AL cycles increase, we ex-
pect to see shorter margins of error difference as the effect of our initial pools on the
model performance could diminish with increase in labeled pool size. Studying the
use of unsupervised/self-supervised learning in later epochs could be an interesting
direction of future work. If initial pools do contribute to better model performances,
our work could make a positive contribution to: (i) boosting AL performance with no
additional annotation; (ii) developing datasets with lesser annotation cost in general;
and (iii) promoting further research in the use of unsupervised learning methods for
AL. On the other hand, if random initial pools perform better than our initial pools,
the community will still have useful insights about this rather unexplored part of AL
through this study.

3.2 Related Work
Analysis of Active Learning: In recent years, previous works have evaluated the
robustness and effectiveness of deep AL methods for various tasks. [70] first reported

22

some obstacles of deploying AL in practice by empirically evaluating consistency of
AL gains over random sampling and transferability of active samples across models.
Along the same lines, [69] evaluated the performance of deep AL methods under data
augmentation, low-budget regime and a label-intensive task of semantic segmenta-
tion. More recently, [68] comprehensively tested the performance variance of deep
AL methods across 25 runs of experiments. They considered various settings such as
regularization, noisy oracles, varying annotation and validation set size, heavy data
augmentation and class imbalance. However, none of these efforts have considered
varying the sampling strategy for the initial pool.
Exploiting Unlabeled Data: Our focus is on finding out if initial pools with
certain desirable qualities can bolster AL performance. We exploit self-supervised
pretext tasks to sample the initial pool more intelligently. Previous works have suc-
cessfully managed to integrate unlabeled data into AL using self-supervised learning
and semi-supervised learning. [78] showed that initializing the target model with
the features obtained from self-supervised pretraining gives AL a kick-start in per-
formance. Contemporaneously, [28] also used this technique in combination with a
GAN based AL method and reported SOTA results on SVHN, CIFAR-10, ImageNet,
CelebA datasets. This is enough evidence that exploiting self-supervised learning
methods can boost AL performance, but the cited works operate in the model weight
space. The importance of good initialization in weight space ([79, 80, 81]) is well un-
derstood by the deep learning community; To the best of our knowledge, there have
been no efforts in understanding the importance of good initialization in data space
for deep AL methods. In case of traditional AL (before deep learning’s popularity),
there have been handful of encouraging works that support our hypothesis ([82, 83]).
Both these works use k-means clustering to initialize the initial label pool, k-nearest
neighbor algorithm for training and report better AL performance on small scale text
classification tasks.
Model Loss for AL: In our work, we use a trained model’s loss to identify the most
informative unlabeled samples. Existing AL methods largely rely on using the target
model’s loss for active sampling. [84] first proposed an AL framework by calculating
Expected Gradient Length (EGL) where the learner queries an unlabeled instance
which, if labeled and added to the labeled pool, would result in the new training
gradient of the largest magnitude. More recently, [26] proposed a loss prediction
module which is attached to the target network to predict the loss value of unlabeled
samples. In contrast to these methods, we strictly rely on a self-supervised model’s
loss, instead of the target model, since the initial pool needs to be selected/sampled,

23

before any model is trained on the target data.

3.3 Methods and Experimental Protocol
In this section, we describe: (i) the notations and setting for pool-based AL cycles;
(ii) our strategies for sampling the initial pool; and (iii) the AL methods that are
subsequently used to build on top of the initial labeled pool. Implementation details
and other considered additional experiments and ablation studies are mentioned at
the end of this section.

3.3.1 Pool-based Active Learning Setting
Given a dataset D, we split it into train (Tr), validation (V), and test (Ts) sets.
At the beginning, the train set is also treated as an unlabeled (U) set, from which
samples are moved to a labeled set (L) after every AL cycle. Pool-based AL cycles
operate on a set of labeled data L0={(xi, yi)}NL

i=1 and a large pool of unlabeled data
U0={xi}NU

i=1, and model Φ0 is trained on L0 in every AL cycle. In our setting, given
L0 = ∅ to start with, a sampling function Ψ(L0, U0,Φ0) parses xi ∈ U0, and selects
k (budget size) samples. These samples are then labeled by an oracle and added
to L0, resulting in a new, extended L1 labeled set, which is then used to retrain Φ.
This cycle of sample-label-train repeats until the sampling budget is exhausted or
a satisfying performance metric is achieved. In our case, we populate L0 using our
proposed methods, discussed in Section 3.3.2. Sec 3.3.3 describes the query methods
we use to perform the traditional AL cycles after this initial pool selection. We can
confirm that there exists a good initial pool if the generalization error of models
starting with our initial pools is lower than those of models starting with random
initial pools across the AL cycles.

3.3.2 Proposed Initial Pool Sampling Strategies
We now describe our initial pool sampling strategies, which were briefly stated in
Section 3.1.

Our methods are fundamentally motivated by the hypothesis that samples con-
sidered challenging for an unsupervised/self-supervised setting can help bootstrap AL
methods through a more intelligent, well-guided choice of an initial labeled pool.

24

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Illustration of query strategies in traditional pool-based AL: (a) A toy
dataset of 500 instances, evenly sampled from two class Gaussians; (b) Decision
boundary of a logistic regression model trained on the dataset; (c) Trained model’s
CrossEntropy loss on training instances; Decision boundary of logistic regression mod-
els trained on 35 instances chosen (d) randomly (e) using Least Confidence method
[6] (f) using Max-Entropy method [7]; Best viewed in color. Labeled instances are
emphasized for clarity.

Self-Supervision Methods

As shown in Figure 3.1, well-known pool-based AL methods rely on choosing samples
with a high uncertainty of the target model trained on an initial labeled pool.

Since our focus is on choosing an initial labeled pool where there is no target
model, we cannot use these AL query methods since we do not have access to labels
to calculate the supervised model’s loss on training data. We hence train a self-
supervised model on the entire unlabeled pool and identify samples as ”challenging”,
where the self-supervised model’s loss is relatively higher than that of others. The
recent success of self-supervised learning in learning useful data representations ([77,
76, 75, 72, 73, 71]) motivates us to hypothesize that such a model could help us sample
the most informative datapoints without any supervision.

Let τ be any self-supervised task with an objective to minimize the loss function
L. Let θ be trained weights obtained by solving τ on the unlabeled data pool U . We
want the oracle to label and populate the initial pool L0 with datapoints sampled by
solving:

arg max
i

Lτ (xi; θ) ∀xi ∈ U (3.1)

Since we are working with a learned model’s loss, any self-supervised task can
be used, making our proposed method task-agnostic. We have chosen tasks that
are simple and easy to interpret, such as image inpainting ([74]) and image rotation

25

prediction ([72]). For example, in case of the rotation prediction task, our strategy
can be summarized as: if a trained rotation predictor struggles to rightly predict the
rotation of a sample, even after looking at it while training, then it is a hard sample
- thus human labeling is needed. In addition to the above tasks, we will also train
a Variational Autoencoder (VAE) ([85]) as one of our tasks where datapoints with
highest loss i.e. hard to reconstruct images are sampled for the initial pool. We
want to do this to understand how complexity of self supervised tasks (e.g. image
inpainting task is more complex than VAEs) relates to efficiency of the sampled initial
pool using those tasks.

Unsupervised Learning (Clustering) Methods

Sampling bias is the most fundamental challenge posed by AL especially in case of
uncertainty based AL methods ([86]). Assume AL is performed on a dataset with data
distribution D. But as AL cycles proceed, and datapoints are sampled and labeled
based on increasingly confident assessments of their informativeness, the labeled set
starts to look less like D. This problem is further exacerbated by highly imbalanced
real-world datasets where random initial samples, with high probability, may not span
the entire data distribution D. To overcome this, several works proposed diversity
based methods ([24, 27]) whose fundamental goal is to sample unlabeled datapoints
from a non-sampled area of D such that all areas of D are seen by the target model.
Motivated by these methods and their success, we propose a clustering-based sampling
method for choosing the initial pool such that the sampled points spans all area of D
(i.e., all clusters) even before AL starts. In a way, this is analogous to exploration in
AL ([87]), albeit in an unsupervised way.

We assume that number of classes to be labeled (K) in the dataset D is known
apriori. If a clustering algorithm is applied on the unlabeled data U={xi}NU

i=1 to obtain
K clusters and every datapoint xi is assigned only one cluster Cj, we get K disjoint
sample sets C = {C1, C2, ..., CK}. If the initial pool budget is B samples, we sample
B
K datapoints from each cluster. Equal weight is given to each cluster to make sure
initial pool is populated with datapoints that span the entire D. As another variant to
this method, we will also experiment by sampling |Cj |∗B

NU
datapoints from each cluster,

keeping the original cluster proportions intact. We will use DeepCluster ([73]) and
k-means as clustering methods in our experiments.

26

3.3.3 Active Learning Query Methods
In order to study the usefulness of the choice of the initial labeled pool across AL
methods, we need to study different AL query methods in later cycles of model upda-
tion. Modern pool-based AL methods may be broadly classified into three categories.
We will evaluate the effectiveness of our sampling methods on AL methods from all
three categories:

• Uncertainty Sampling: Least Confidence (LC) ([6]), Max-Entropy (ME)
([7]), Min-Margin (MM) ([88]) & Deep Bayesian AL (DBAL) ([23])

• Diversity Sampling: Coreset (greedy) ([24]) & Variational Adversarial AL
(VAAL) ([27])

• Query-by-Committee Sampling: Ensemble with Variation Ratio (ENS-
varR) ([25]) (3 ResNet18 models) & ensemble variants of Least Confidence
(ENS-LC), Max-Entropy (ENS-ME) and Margin Sampling (ENS-MM)

All the above methods are already implemented in the AL toolkit offered by [68],
and we will leverage it to study the methods.

3.4 Implementation Details
Following recent deep AL efforts, we will use MNIST, CIFAR-10, CIFAR-100 and
Tiny ImageNet-200 ([89]) datasets in our experiments. We use the AL methods,
model architectures, data augmentation schemes and implementation details from
[68] for our experiments.

For all datasets, we plan to tune hyperparameters using grid search. However, go-
ing by previous works, we expect to use an Adam optimizer ([90]) across the datasets.
For datasets CIFAR-10 and CIFAR-100, we expect to use learning rate (lr), weight
decay (wd) from [68] - (lr = 5e−4, wd = 5e−4) and (lr = 5e−4 and wd = 0) respec-
tively. For all datasets, we augment the data with random horizontal flips (p = 0.5)
and normalize them using statistics provided in 1, 2. We will use ResNet18 ([91]) for
all our experiments.
AL Details: As usually done in most AL work, we will initialize L0 with 10% of
the unlabeled set U and in every AL cycle 10% of the original unlabeled set U will
be sampled, labeled and moved to labeled set Li. However, we expect some changes

1https://github.com/pytorch/examples/
2https://github.com/kuangliu/pytorch-cifar

27

https://github.com/pytorch/examples/
https://github.com/kuangliu/pytorch-cifar

in AL cycle details due to irregularities between datasets (e.g. MNIST is easier to
learn compared to Tiny ImageNet) and those changes will be reported appropriately
post-experiments.

Performance Metrics: We will measure accuracy on the test set after every AL
cycle (including after the choice of the initial labeled pool). Our initial pool sampling
strategies will be compared against a random selection of the initial pool (the default
option used today), and all our results will be reported (as mean and std) over 5 trials
to avoid any randomness bias in the results.

We also plan to visualize the chosen initial labeled pool using t-SNE embeddings
in case this provides any understanding of sampling strategies that work best. We
will also examine overlap between every labeled pool acquired during all AL cycles
when our initial pool sampling strategy is used against a random choice. This would
allow us to know if initial pool played any role in altering the labeled pools (for better
or worse).

3.4.1 Additional Experiments
In practice, populating the initial pool only with challenging datapoints may not be
fully conducive for learning. Hence, we plan to follow [92] and split the sorted list
obtained by solving Eqn (3.1) into n equal-sized bins. If the initial pool budget size
is B, we query B

n highest scored images from the top (n − 1) bins (hard samples)
and B

n lowest scored images from the last bin (easy samples). So the resultant batch
contains images from different regions of the score space. In the experiments, we will
use 2, 5 and 10 as the values of n.

Additionally, we will test the usefulness of our sampling methods on AL for im-
balanced data. For this, we will follow [93] to simulate a long-tailed distribution of
classes on CIFAR-10, by following power law.

3.5 Experimental Results
In this section, we first document the modifications to the original experimental pro-
tocol. Then, we present the experimental results on MNIST, CIFAR-10, CIFAR-100
and Tiny ImageNet datasets. Then, we discuss our experimental findings and eval-
uate the extent to which intelligently sampled initial labeled pools help boost AL
performance3. Finally, we provide more training details needed for reproducing our

3Our code is available at https://github.com/acl21/init-pools-dal

28

https://github.com/acl21/init-pools-dal

10 20 30 40 50 60
% of Data Labeled

65.0

70.0

75.0

80.0

85.0

90.0

T
es

t
A
cc

ur
ac

y

Random

74.0

75.0

76.0

77.0 90.0

90.5

91.0

91.5

10 20 30 40 50 60
% of Data Labeled

65.0

70.0

75.0

80.0

85.0

90.0

T
es

t
A
cc

ur
ac

y

Least Confidence (LC)

74.0

75.0

76.0

77.0 91.0

91.5

92.0

92.5

93.0

10 20 30 40 50 60
% of Data Labeled

65.0

70.0

75.0

80.0

85.0

90.0

T
es

t
A
cc

ur
ac

y

Min-Margin (MM)

74.0

75.0

76.0

77.0 91.0

91.5

92.0

92.5

93.0

10 20 30 40 50 60
% of Data Labeled

65.0

70.0

75.0

80.0

85.0

90.0

T
es

t
A
cc

ur
ac

y

Max-Entropy (ME)

74.0

75.0

76.0

77.0 91.0

91.5

92.0

92.5

93.0

10 20 30 40 50 60
% of Data Labeled

65.0

70.0

75.0

80.0

85.0

90.0

T
es

t
A
cc

ur
ac

y

DBAL

72.0

73.0

74.0

75.0

76.0 91.0

91.2

91.5

91.8

92.0

10 20 30 40 50 60
% of Data Labeled

65.0

70.0

75.0

80.0

85.0

90.0

T
es

t
A
cc

ur
ac

y

ENS-varR

72.0

74.0

76.0 90.0

91.0

92.0

93.0

10 20 30 40 50 60
% of Data Labeled

65.0

70.0

75.0

80.0

85.0

90.0

T
es

t
A
cc

ur
ac

y

Coreset

74.0

76.0

91.0

91.5

92.0

92.5

93.0

10 20 30 40 50 60
% of Data Labeled

65.0

70.0

75.0

80.0

85.0

90.0

T
es

t
A
cc

ur
ac

y

VAAL

74.0

75.0

76.0

77.0 89.0

90.0

91.0

Figure 3.2: Performance of each active learning query method with different initial
pool sampling strategies on CIFAR-10. There are 8 graphs shown, one for each active
querying method as mentioned in the graph titles. Each colored line in the graph
corresponds to an initial pool sampling method, as shown in the legend.

results.

Using grid search, we obtained hyperparameters which are better than the ones
mentioned in the proposal. We report the final hyperparameter choices in section 3.6.

3.5.1 Initial Pool Sampling Details
For completeness, we briefly describe the methods used for our experiments below:
SimCLR: Contrastive learning methods, such as SimCLR ([71]), learn representa-
tions by contrasting positive pairs against negative pairs. Positive pairs include input
images and their augmented variants. Ideally, a trained SimCLR model should have
comparatively low contrastive loss for positive pairs of a given image taken from the
unlabeled set. We design our sampling method on this fact. Firstly, we train a
ResNet-18 SimCLR model with the recommended augmentations: image horizontal
flipping, Gaussian blur, color jitter, and image gray-scale. After training the model,
we assign each image in the unlabeled pool a score - model’s average contrastive loss
between an input image and four of its augmented variants4. The higher the average
contrastive loss, the harder it was for the trained SimCLR model to learn that input,
so we sample such images first.

4MNIST dataset has gray-scale images so we average the contrastive loss over the other three
augmentations.

29

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A
cc

ur
ac

y

Random

31.0

32.0

33.0

34.0
56.0

57.0

58.0

59.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A
cc

ur
ac

y

Least Confidence (LC)

30.0

31.0

32.0

33.0

34.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A
cc

ur
ac

y

Min-Margin (MM)

31.0

32.0

33.0

34.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A
cc

ur
ac

y

Max-Entropy (ME)

30.0

31.0

32.0

33.0

34.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A
cc

ur
ac

y

DBAL

31.0

32.0

33.0

34.0

56.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A
cc

ur
ac

y

ENS-varR

31.0

32.0

33.0

34.0
56.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A
cc

ur
ac

y

Coreset

31.0

32.0

33.0

34.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

T
es

t
A
cc

ur
ac

y

VAAL

31.0

32.0

33.0
55.0

56.0

57.0

58.0

Figure 3.3: AL Performance of each active learning query method with different initial
pool sampling strategy on CIFAR-100.

VAE: We train a vanilla VAE model on the entire training data till convergence.
We then sample those data points from the training set whose reconstruction error
was high post-training. The higher the reconstruction error, the harder it was for the
model to learn such images, hence we sample them first. We chose VAE in particular
to understand how task complexity (the VAE reconstruction task is simpler than
SimCLR’s) contributes to initial pool efficiency.
SCAN and K-Means: SCAN ([94]) is a state-of-the-art clustering method where
feature learning and feature clustering are decoupled. SCAN builds on top of features
learned by any self-supervision task (in our case, we used SimCLR). At the end of
training, the SCAN model assigns a single cluster to each data point. In case of
K-Means, we apply K-Means algorithm to SimCLR-learned feature representations
to get cluster assignments. Once again, we chose these two clustering methods (one
very simple, K-Means, and one more sophisticated, SCAN) to understand the role of
model complexity w.r.t. the effectiveness of the initial pool.

3.5.2 Results
Main Experiments

Figures 3.2-3.5 depict the main results of our experimental study on finding good
initial pools for AL. We first describe how the results are illustrated in Figures 3.2-3.5.
We have one figure for each of the following four datasets: CIFAR-10, CIFAR-100,

30

10 20 30 40 50 60
% of Data Labeled

15.0

20.0

25.0

30.0

35.0

T
es

t
A
cc

ur
ac

y

Random

17.0

18.0

19.0

35.0

36.0

37.0

10 20 30 40 50 60
% of Data Labeled

15.0

20.0

25.0

30.0

35.0

T
es

t
A
cc

ur
ac

y

Least Confidence (LC)

17.5

18.0

18.5

19.0

19.5 35.0

36.0

37.0

10 20 30 40 50 60
% of Data Labeled

15.0

20.0

25.0

30.0

35.0

T
es

t
A
cc

ur
ac

y

Min-Margin (MM)

17.0

18.0

19.0

35.0

36.0

37.0

10 20 30 40 50 60
% of Data Labeled

15.0

20.0

25.0

30.0

35.0

T
es

t
A
cc

ur
ac

y

Max-Entropy (ME)

17.0

18.0

19.0

35.0

36.0

37.0

10 20 30 40 50 60
% of Data Labeled

15.0

20.0

25.0

30.0

35.0

T
es

t
A
cc

ur
ac

y

DBAL

17.0

18.0

19.0

20.0

36.0

37.0

38.0

10 20 30 40 50 60
% of Data Labeled

15.0

20.0

25.0

30.0

35.0

T
es

t
A
cc

ur
ac

y

ENS-varR

17.0

18.0

19.0 34.5

35.0

35.5

36.0

36.5

10 20 30 40 50 60
% of Data Labeled

15.0

20.0

25.0

30.0

35.0

T
es

t
A
cc

ur
ac

y

Coreset

17.0

18.0

19.0

35.0

36.0

37.0

38.0

Figure 3.4: Tiny ImageNet: Our initial pools perform no better than random initial
pools across all AL configurations.

Tiny ImageNet and MNIST. Each plot inside the figures depicts the performance
of one AL method with various initial pool techniques. For instance, the plot titled
VAAL (second row, right most) in Figure 3.2 shows the performance of models trained
on data sampled by VAAL’s query method in each episode, however initiated with
different initial pool strategies (indicated by different colored lines). For example,
the red lines show that AL methods were started using the SimCLR-based initial
pool strategy. The plots are conventional AL plots where the x-axis represents the
percentage of labeled data used to train the model, and y-axis represents the model’s
performance on the test set.

We now briefly analyze the results of each initial pool sampling strategy.
SimCLR: In Figure 3.2 (CIFAR-10), before the first episode, models trained with
SimCLR-sampled initial pools show better performance than models trained on a ran-
domly generated initial pool across all eight configurations, including passive learning.
However, this performance gain in the beginning of the AL cycles did not contribute
to the model in picking better active samples. We can see that models starting with
SimCLR-based initial pools performed similar to the models which started with ran-
dom initial pools at each episode of the AL cycles. Similarly, on CIFAR-100, we see
in Figure 3.3 that the models starting with SimCLR sampled initial pools perform
either same or worse than the models starting on random initial pools at both ends
of the AL cycles across all eight configurations. On Tiny ImageNet (Figure 3.4) and
MNIST (Figure 3.5), we see the same trend as that of CIFAR-100’s.
SCAN and K-Means: Across all datasets, none of the two clustering methods:

31

SCAN and K-Means, show signs of contributing to better model performances com-
pared to random initial pools.
VAE: Perhaps the most surprising behaviour we noticed among all the methods was
how VAE-sampled initial pools worked. Models trained with VAE sampled initial
pools consistently underperformed in the first episode of the AL cycles across all four
datasets. On CIFAR-10, in the first episode, the average test accuracy difference
between models trained with VAE initial pools and other initial pools was 12%.
Similarly, there was a 11% difference in case of CIFAR-100, 4.5% in case of Tiny
Imagenet and 18% in case of MNIST. We suspect this is due to the difference in
models used for initial pool sampling and active learning. It has been empirically
shown that data points actively sampled by one model, say VGG16, do not transfer
well to another model, say ResNet-18 ([70, 68]). To allow for smooth transfer of
samples, we used the same ResNet18 model for training SimCLR, SCAN and active
learning episodes. However, following general trends of use of VAEs, we use a simple
VAE model with 4 convolutional layers each in the encoder and the decoder, which
may have resulted in this significant difference.

At the end of all AL cycles, on CIFAR-10, Tiny Imagenet and MNIST, we see
that all initial pools converge to largely similar test accuracy, suggesting no significant
improvement in AL performance. But we see a different outcome in the case of
CIFAR-100 (Figure 3.3). On CIFAR-100, models starting with VAE-sampled initial
pools, despite the bad start, ultimately outperform the models starting with the
other four initial pools in six out of the seven configurations. In the passive learning
configuration (control experiment), we notice that VAE appears to be outperforming
others but that happens only in the final episode of the AL cycle, suggesting that
this performance gain in six configurations was not a mere coincidence. The models
starting with VAE start to outperform their random counterparts right after the
second episode (20%), and we notice the VAE curve starting to diverge from others.
However, this behavior was only seen on CIFAR-100.

To summarize the findings, our proposed methods could not conclusively prove
the existence of good initial pools that help AL methods in the long run, although
the use of VAE-based initial pool strategy showed some interesting trends.
What explains the odd behavior of VAE sampled initial pools on CIFAR-
100?
To investigate the reason behind the odd behavior of models started with VAE-based
initial pools, we study the class distribution of initial pools obtained by 4 methods -
VAE, SCAN, SimCLR and K-Means. To this end, we picked initial pools from the

32

60 180 300 420 540 660
No. of Labels

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
A
cc

ur
ac

y

Random

30.0

35.0

40.0

75.0

77.5

80.0

60 180 300 420 540 660
No. of Labels

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
A
cc

ur
ac

y

Least Confidence (LC)

30.0

35.0

40.0

75.0

77.5

80.0

60 180 300 420 540 660
No. of Labels

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
A
cc

ur
ac

y

Min-Margin (MM)

25.0

30.0

35.0

40.0

75.0

77.5

80.0

60 180 300 420 540 660
No. of Labels

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
A
cc

ur
ac

y

Max-Entropy (ME)

30.0

40.0

75.0

77.5

80.0

60 180 300 420 540 660
No. of Labels

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
A
cc

ur
ac

y

DBAL

30.0

35.0

40.0

75.0

77.5

80.0

60 180 300 420 540 660
No. of Labels

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
A
cc

ur
ac

y

ENS-varR

35.0

40.0

74.0

76.0

78.0

80.0

60 180 300 420 540 660
No. of Labels

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
A
cc

ur
ac

y

Coreset

30.0

40.0

70.0

75.0

60 180 300 420 540 660
No. of Labels

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
A
cc

ur
ac

y

VAAL

30.0

35.0

40.0

75.0

77.5

80.0

Figure 3.5: MNIST.

Figure 3.6: CIFAR-100: Class distribution of initial pools picked by various methods.
Note the apparent class imbalance in the initial pool picked by VAE. Is this the reason
for the performance gain?

DBAL experiment.
Looking at the class frequencies of all CIFAR-100 initial pools in Figure 3.6,

we notice a clear difference between the VAE-sampled initial pool and the others.
VAE-sampled initial pool has more class imbalance and is particularly emphasizing
on images from specific classes. To verify if the VAE-based initial pool sampling
technique is biased towards difficult classes, we created two sets of CIFAR-100 classes:
(1) Top 10 classes sampled by VAE, (2) 10 classes with least per-class test accuracy
w.r.t. the model in the final AL episode. We use (2) as a proxy for “difficult” classes.
We observed that both these sets have 4 classes in common. While this overlap is
not high enough to conclude that VAE sampling is biased towards difficult classes, it
nevertheless is an interesting future direction to pursue, and merits more study.

33

Ablation Experiments

Comparing the Initial Pools: We used SimCLR representations to obtain t-SNE
embeddings on all initial pools of a randomly chosen Max-Entropy (ME) experiment
on CIFAR-10. The t-SNE plots of 5000 data points are shown in Figure 3.7. Unsur-
prisingly, we see no apparent inconsistencies or anomalies in either class distribution
or inter-class relationships across the four initial pools except for the VAE-sampled
initial pool whose class distribution is noticeably different than the others.

The other four initial pools are nearly identical. A confusion matrix with their
overlap statistics, shown in Figure 3.7, shows that all five initial pools roughly shared
approximately 10% of the data points among themselves. Even with nearly 90% of
unique data points, all four initial pools contributed to largely similar model gener-
alization error (as seen in Max-Entropy graph of Figure 3.2).

Figure 3.7: CIFAR-10: Initial pools visualized using t-SNE.

Low-Budget AL: Is 10% of data points too many for the model? Is that why we are
unable to spot any potential performance differences between the four mostly unique
initial pools? To find out if a low query budget can help spot performance differences,
we repeated our experiments on CIFAR-10 for Max-Entropy (ME), Least Confidence
(LC) and Deep Bayesian (DBAL) AL query methods but with just 1000 samples (2%
of the overall dataset size) in the initial pool. We set the AL budget to 1000 and
allowed the AL cycles to run up to 10 episodes (22% of the overall dataset size). The
results of these experiments (averaged over 2 runs) are shown in Figure 3.8. All three
AL methods benefit from VAE-sampled initial pools, albeit marginally, while other

34

initial pools do not contribute to any performance gain compared to random initial
pools.

2 4 6 8 10 12 14 16 18 20 22
% of Data Labeled

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
A
cc

ur
ac

y

Least Confidence (LC)

48.0

50.0

52.0

82.0

84.0

86.0

2 4 6 8 10 12 14 16 18 20 22
% of Data Labeled

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
A
cc

ur
ac

y

Max-Entropy (ME)

48.0

50.0

52.0

82.0

84.0

86.0

2 4 6 8 10 12 14 16 18 20 22
% of Data Labeled

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
A
cc

ur
ac

y

DBAL

48.0

50.0

52.0

82.0

84.0

86.0

Figure 3.8: CIFAR-10: In low budget AL setting, only VAE initial pools show
marginal performance gains over random initial pools.

Long-Tail CIFAR-10: One of the motivations behind our proposed unsupervised
method (Section 3.3.2) was to allow AL cycles to start with a balanced initial pool,
which spans the entire data distribution, when dealing with imbalanced datasets. To
that end, we created a Long-Tail CIFAR-10 with an imbalance factor of 50 ([93]). We
report the experiment results on three AL methods (ME, LC, DBAL) averaged over 2
runs in Figure 3.9. Surprisingly, our unsupervised initial pool sampling methods did
not help the three AL methods. In fact, models trained on SCAN-based initial pools
did consistently worse than models trained on random initial pools. Once again, VAE-
based initial pools positively contribute to three AL methods albeit the performance
gain is quite marginal.

10 20 30 40 50 60
% of Data Labeled

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

T
es

t
A
cc

ur
ac

y

Least Confidence (LC)

30.0

35.0

40.0

66.0

68.0

70.0

10 20 30 40 50 60
% of Data Labeled

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

T
es

t
A
cc

ur
ac

y

Max-Entropy (ME)

30.0

35.0

40.0

66.0

68.0

70.0

10 20 30 40 50 60
% of Data Labeled

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

T
es

t
A
cc

ur
ac

y

DBAL

30.0

35.0

40.0

66.0

68.0

70.0

Figure 3.9: Long-Tail CIFAR-10: Our unsupervised sampling methods (SCAN and
K-Means), motivated by this imbalance setting, did not improve LC, ME, DBAL
query method performances. In the long run, VAE-based initial pools show marginal
performance gains over random initial pools.

35

3.6 More Training Details
In this section we mention more training details necessary for reproducing our exper-
iments.

3.6.1 Slightly Modified ResNet18 Model
To add an extra projection layer as the penultimate layer of the model is a convention
in self-supervised learning methods ([71, 95]). To be consistant with the ResNet18
model used for SimCLR and SCAN training, we added a projection layer to the
model just before the final fully connected layer. Projection dimension was set to 128
for MNIST, CIFAR-10/100, 512 for Tiny ImageNet experiments. Also, the official
ResNet18 implementation doesn’t include any dropout layers in it. To allow for DBAL
method to run Monte Carlo simulations, we added a dropout layer with p=0.5 after
the flattening layer. We only did this for DBAL experiments.

3.6.2 Hyperparmeters for AL Training
For all experiments on all datasets, we set momentum = 0.9, wd = 3e−4, gamma =
0.1. Other hyperparameter choices are as follows:

Dataset Epochs Optimizer Learning Rate Scheduler Batch Size
CIFAR-10/100 200 SGD 0.025 Cosine (0.1) 96

MNIST 100 Adam 0.005 None 64
TinyImageNet 100 Adam 0.001 None 200

Table 3.1: Hyper-parameters of AL Cycles

3.6.3 SimCLR, SCAN and VAE Training
For all four datasets we train SimCLR and SCAN with largely similar hyperparam-
eters. We use the official implementation of SCAN5 (includes SimCLR implemen-
tation as well) for training and use their recommended hyperparmeters across all
experiments. In case of CIFAR-100, we follow the standard practice and group the
100 classes into 20 super classes before training SimCLR (the grouping details can
be found in the official SCAN repository). Evaluation metrics of our final SimCLR
+ SCAN + Self Labeling models are as follows:

5https://github.com/wvangansbeke/Unsupervised-Classification/

36

https://github.com/wvangansbeke/Unsupervised-Classification/

Dataset ACC NMI ARI
CIFAR-10 0.70 0.46 0.38
CIFAR-100 0.44 0.41 0.25

MNIST 0.86 0.72 0.72
Tiny ImageNet 0.10 0.07 0.05

Table 3.2: Final Model Performances after Self-Labeling (SimCLR + SCAN + Self-
Label)

In case of VAE training, we trained a Vanilla VAE6 on the entire training data
with hyperparameters as follows: optimizer = Adam, lr = 0.001, epochs = 100,
momentum = 0.9, wd = 5e−4, batch size = 200, for all four datasets. We used 5%
of the training data as the validation set. The model weights at epoch with best loss
are saved for initial pool sampling.

3.7 Conclusion
In this work, we proposed two kinds of strategies – self-supervision based and clus-
tering based – for intelligently sampling initial pools before the use of active learning
(AL) methods for deep neural network models. Our motivation was to study if there
exist good initial pools that contribute to better model generalization and better deep
AL performance in the long run. Our proposed methods and experiments conducted
on four image classification datasets couldn’t conclusively prove the existence of such
good initial pools. However, a surprising outcome of this study was how initial pools
sampled with a simple VAE task contributed to improved AL performance, better
than more complex SimCLR and SCAN tasks. Even though VAE-based initial pools
worked better than random initial pools only on one dataset (CIFAR-100), ablation
studies on low budget CIFAR-10 settings as well as on Long-Tail CIFAR-10 point
towards potential in VAE-sampled initial pools. Are images that are hard to recon-
struct for VAEs good for generalization? Can better generative models like GANs do
better than VAEs? We leave this for future work. While our methods and findings
could not conclusively prove our hypothesis that AL methods can benefit from more
intelligently chosen initial pools, we are optimistic about the potential this research
direction holds.

6https://github.com/AntixK/PyTorch-VAE

37

https://github.com/AntixK/PyTorch-VAE

Chapter 4

On Adversarial Robustness: A
Neural Architecture Search
perspective

4.1 Understanding Adversarial Robustness from an
Architecture Perspective

One of the two popular ways in which adversarial examples are created is known as
white-box attacks. In this setting, the attacker has access to the model architecture
and the model parameters. The adversarial examples are typically calculated by
taking the gradient of the loss function, which is a function of the network topology.
This raises an important question that forms the primary motivation of this work, Can
the complex topology of a neural network architecture provide adversarial robustness
without any form of adversarial training?

In an attempt to understand adversarial robustness purely from an architectural
perspective, in this chapter, we seek to answer the following questions,

abc

• How robust are existing SoTA image classification architectures without any
form of adversarial training?

• How do NAS-based architectures compare with hand-crafted architectures (like
ResNets, DenseNets, etclet@tokeneonedot) in terms of architectural robustness?

• Does an increase in the number of parameters of the architecture help improve
robustness?

38

• Where does the source of adversarial vulnerability lie for NAS? Is it in the
search space or in the way the current methods are performing the search?

To the best of our knowledge, our work is the first attempt at understanding
adversarial robustness purely from an architectural perspective. We show that the
complex topology of neural network architectures can be leveraged to achieve robust-
ness without adversarial training. Additionally, we introduce two simple metrics,
Harmonic Robustness Score (HRS) and Per-parameter HRS (PP-HRS) that combine
(1) the total number of parameters in a model, (2) accuracy on both clean and per-
turbed samples, to convey how robust and deployment-ready a given model is when
no adversarial training is performed.

We examine the adversarial robustness of different hand-crafted and NAS-based
architectures in a wide range of scenarios and find that for large-scale datasets, com-
plex tasks and stronger attacks (like PGD) the traditional hand-crafted architectures
like ResNet and DenseNets are more robust than NAS-based architectures (Figure
4.1) i.e., the adversarial robustness of a model heavily depends on the network topol-
ogy. Results of our study can be used to design network architectures that can give
adversarial robustness as a free add-on along with SoTA performance on un-perturbed
samples. Finally, we show that the popular way of increasing parameters to increase
robustness [96, 97] holds up only to an extent; after a certain threshold increasing
parameters alone hurts both the adversarial robustness and accuracy of clean samples.

0

10

20

30

93 94 95 96 97 98

Ensemble of
randomly

picked DARTS
architectures

VGG-16

DARTS

Resnet-18 Resnet-50
Densenet-169

Densenet-121

NSGA Net

PC-DARTS P-DARTS

Proxyless-NAS

Test-set Accuracy

PG
D

Ac
cu

ra
cy

Figure 4.1: Comparison of test-set accuracy and PGD accuracy of NAS and hand-
crafted architectures on CIFAR-10 dataset. Bubble size represents the number of
parameters

39

4.2 Adversarial Robustness and Neural Architec-
ture Search

Adversarial Attacks Categorisation: Existing adversarial attacks can be broadly
classified into white-box and black-box attacks. The difference between these lies
in the knowledge of the adversaries. In white-box attacks, the adversaries have
the full knowledge of the target model, including the model architecture and pa-
rameters. In a black-box setting, the adversaries can only resort to the query ac-
cess to generate adversarial samples. In the frameworks of these threat models
several effective adversarial attacks have been proposed over the years such as L-
BFGS [98], FGSM [99], BIM [100], C&W attacks [101] JSMA [102], Deep-Fool [103]
,R-FGSM [104], StepLL [105], PGD [96] and most recently SparseFool [106], F-
FGSM [107]. For more information on adversarial attacks and defenses, please see
[108, 109]. White-box is a stronger setting as the attackers can access the model
parameters and architecture. It is also closely related to the network topology aspect
of our study. So we mainly focus on the white-box setting for our work.

One popular way to improve the adversarial robustness of deep learning models
is adversarial training (AT) [110]. The basic idea of AT is to create and incorporate
adversarial samples during the training phase. A critical downside of AT is that it
is time-consuming[111]; in addition to the gradient computation needed to update
the network parameters, each stochastic gradient descent (SGD) iteration requires
multiple gradients computations to produce adversarial images.

Categorisation of existing NAS approaches Over the years, several ap-
proaches have emerged to search architectures using methods ranging from Reinforce-
ment Learning (RL) [30], Neuro-evolutionary approaches [112], Sequential Decision
Processes [113], One-shot methods [33] and fully differentiable Gradient-based meth-
ods [114]. While most of these algorithms attempt to search a cell architecture (micro
search) due to the computational cost involved and repeat the cell a fixed number of
times, few recent approaches have also demonstrated searching the full architecture
(macro search).

Most of the early approaches are based on RL and neuro-evolutionary algo-
rithms, making the search process computationally intensive. Recently these have
been replaced by one-shot fully-differentiable gradient-based NAS methods, such as
DARTS [114], which are orders of magnitude faster than non-differentiable techniques
and have gained much traction recently. P-DARTS [115] bridges the gap between
search and evaluation by progressively increasing search depth. Partially-Connected

40

DARTS [116], a SoTA approach in NAS, significantly improves the efficiency of one-
shot NAS by sampling parts of the super-network and adding edge normalization
to reduce redundancy and uncertainty in search. DenseNAS [117], a more recent
method, attempts to improve search space design by further searching block counts
and block widths in a densely connected search space. Despite a plethora of these
methods and their applications, there has been minimal effort to understand the
adversarial robustness of final learned architectures.

Adversarial Robustness of Architectures: [96] is one of the early works
to talk about adversarial robustness of network architectures. It shows that when
training with un-perturbed samples, increasing the network’s capacity in terms of
width, depth, and the number of parameters can alone help improve the robustness
for datasets like MNIST and CIFAR-10. Recently, [97] echoes this observation by
showing the depth of the networks helps improve the adversarial robustness during
adversarial training. Both [96, 97] talk about robustness mainly in the context of
adversarial training. However, our results show that when no adversarial training
is performed, increasing parameters alone after a certain point will hurt adversarial
robustness rather than helping.

Very recently, there have been limited efforts to improve adversarial robustness
using architecture search [118, 119]. [118] proposes a robust architecture search frame-
work by leveraging one-shot NAS. However, the proposed method adversarially trains
the entire NAS search space before starting the search process, making it harder to
assess the contribution of just the architecture to the adversarial robustness. [119]
uses black-box attacks to generate a fixed set of adversarial examples on CIFAR-10
and used these examples to search for a robust architecture using NAS. The experi-
mental setting is constrained and does not reflect the model’s true robustness as the
adversarial examples are fixed a priori. No study is done on white-box attacks. Both
[118] and [119] do not make any comparisons with existing NAS methods, which, as
per our study, are already robust to an extent.

In this work, we mainly focus on evaluating the robustness of SoTA NAS methods
on white-box attacks across datasets of different sizes, including large-scale datasets
such as ImageNet [19] and compare them with hand-crafted models like ResNets
and DenseNets. As a part of our study, we introduce metrics that can be used
to estimate the trade-off between clean accuracy and adversarial robustness when
comparing architectures within and across different families.

41

4.3 Robustness of NAS models: A Study
We have carefully designed our experimental setting to answer the questions stated in
Section 4.1. We begin by describing the design of our experiments, providing details
about datasets, models, attacks, and metrics.

Datasets: Since we want to compare the robustness of architectures across different
dataset scales and complexities, we choose four different image classification datasets.
In addition to the standard CIFAR-10 [120] data set, which consists of 60K images
of 32× 32 resolution, we also choose CIFAR-100 [121] to test if the same robustness
trends hold when the labels turn from coarse to more fine-grained and the number of
classes increase by a factor of 10. To study the robustness trend for tougher tasks like
fine-grained image classification where the classes are semantically and perceptually
more similar, we choose 102 Flowers dataset [122], which consists of 8189 flowers
images split across 102 categories with each category having 40-258 images.

Since most real-world applications deal with large-scale datasets, we also test
robustness on ImageNet [19] dataset, consisting of ∼1.3M images from 1000 classes.
This makes our study more complete when compared to earlier works.
Architectures: We select most commonly used NAS methods including DARTS [114],
P-DARTS [115], ProxylessNAS [123], NSGA-Net [124], along with recent methods like
PC-DARTS [116] and DenseNAS [117]. We evaluate five well-known handcrafted ar-
chitectures and at least four NAS architectures on each dataset mentioned above for a
fair comparison. For all experiments, we either use pre-trained models made available
by the respective authors or train the models from scratch until we obtain the per-
formance reported in the respective papers. For the results on Flowers-102 dataset,
we explicitly search for an architecture using the code provided by [125]. The results
for NSGA-Net are only available for CIFAR-10/100 because its implementation does
not support Imagenet. Similarly, the implementation of DenseNAS does not support
CIFAR-10/100, so the results are shown only for ImageNet. ProxylessNAS provides
pre-trained models for both CIFAR-10 and ImageNet, so we show the results only on
those two datasets.
Ensemble of Architectures: When compared with single architecture, an ensemble
of architectures are known to be adversarially more robust [126]. To understand the
effectiveness of ensembling, in Section 4.4.4, we random sample cells from the DARTS
search space using the code provided by [125]; and stack these cells to create small
architectures, since this is randomly sampling, the search cost associated with building

42

Search
Space

20 cells

Search
for a cell

Final Network

Search
Space

Linear M
odel

6 cells

2 cells

12 cells

Randomly
sample cells

Final Network

Searched cell

Randomly sampled
cells

Figure 4.2: Left: Standard procedure for building architectures from DARTS search
space; Right: Procedure for building ensembles using DARTS search space. 12, 6, 2
can be replaced with any values that sum to 20.

these architectures is zero. After sampling, we follow the standard DARTS training
protocol to train these architectures. In general, for the CIFAR-10 dataset, DARTS
architectures having 20 cells are trained for 600 epochs. Following this, the number of
epochs for training each network in the ensemble is determined based on the number
of cells in that network. Effectively the ensemble as a whole is trained for 600 epochs
to ensure we make a fair comparison with existing approaches. After training each of
these networks separately; We train a simple linear model to combine the individual
model outputs; this linear model is trained only for two epochs. The difference
between standard DARTS and ensembling by sampling from DARTS search space is
visually shown in Figure 4.2. More details on the structure of the linear model are
discussed in Section 4.4.4
Adversarial Attacks: For adversarial robustness, we test against the standard at-
tacks like FGSM [99], PGD [96] and additionally report results on recently introduced
F-FGSM[107] and AutoPGD[127]. For all these attacks, we use a perturbation value
of 8/255 (3e-2) this denotes the maximum noise added to each pixel in the input
image for perturbing it and step size of 2/255 (7e-3), with the attack iterations as
10. Additionally, we run the AutoPGD attack with 10 random restarts. All these
parameter choices are standard and are widely used in the community [128, 129, 107],
architectures are trained using standard training protocols, and no adversarial train-
ing is performed. We use the library provided by [130] for all the adversarial attacks
in our experiments.
Metrics: We use Clean Accuracy and Adversarial Accuracy as our performance
metrics. Clean accuracy refers to the accuracy on the undisturbed test set as provided

43

in the dataset. For each attack, we measure Adversarial accuracy by perturbing the
test set examples using various attacks in the methods listed in 4.3. These adversarial
accuracies are reported in the tables as FGSM, F-FGSM, PGD, depending on the
attack.

One of the main problems with adversarially trained models is that their clean
accuracy is less than standard non-adversarially trained models. Adversarial vulner-
ability is a side-effect of overfitting to the training set [131]. While this overfitting
gives good performance on the test set, it makes the model vulnerable to adversarial
examples. If a model accuracy on clean samples is not good, it is not useful when de-
ployed in a situation where un-perturbed samples are often more often. On the other
hand, if the model has SoTA performance on a clean test-set, it becomes vulnerable
to adversarial examples. There is no proper metric to capture this clean accuracy vs.
adversarial accuracy trade-off. We introduce a metric, which we call Harmonic Ro-
bustness Score (HRS), which is the harmonic mean of clean accuracy and adversarial
accuracy. HRS captures the trade-off between the clean accuracy and robustness to
the commonly used PGD attack. By doing so, it captures the real-world usefulness of
a model along with its resilience when no adversarial training is performed. Consider
a model with clean accuracy C and PGD accuracy P (both in percentage), HRS for
that model is calculated as follows:

HRS =
2CP

C + P
(4.1)

When comparing performances of architectures belonging to the same family, number
of parameters play an important role. So we further define per-parameter harmonic
robustness score (PP-HRS) to measure the accuracy vs. robustness trade-off within
a family of architectures. PP-HRS compares the parameters of the model with the
parameters in the baseline model of that family. In a family of architectures (F),
consider a baseline model mb having pb million parameters, now for a model mi ∈ F
with pi million parameters, PP-HRS is calculated as follows:

PP-HRS = HRS ∗ pb
pi

(4.2)

4.4 Analysis and Results
In this section, we compare and contrast the robustness of different architectures in
a wide-range of scenarios and answer questions listed in Section 4.1

44

4.4.1 How Robust is existing SoTA Image Classification Ar-
chitecture without any form of Adversarial Training?

To gauge the adversarial robustness of current SoTA architecture used for image clas-
sification, we have chosen EfficientNet [34], a widely popular and SoTA architecture
for image classification. In Table 4.1, we compare the clean accuracy, adversarial
accuracy and HRS for three different variants, B0, B4, B7 of EfficientNet (choice
based on parameter count; small, medium, high) on the ImageNet dataset with a
fixed input image size of 224× 224. Results for all the other variants are discussed in
Section 4.4.3. EfficientNet cannot be distinctly categorized as NAS or hand-crafted;
they’re a mix of NAS and some heuristic-based hand-engineering. For this reason, we
omit EfficientNet from our analysis in Section 4.4.2

[34] proposed EfficientNets, a family of models developed using NAS and com-
pound scaling. The baseline network is developed using NAS, after which the optimal
depth, width, and input image resolution are determined using compound scaling.
Compound Scaling uses a compound coefficient (φ) to scale width, depth, and reso-
lution in a principled way. In general, the compound coefficient φ is specified by the
user; it controls how many more resources are available for model scaling. α, β, and
γ shown in Eq ?? specify how to assign the resources to network width (w), depth(d),
and image resolution(r), respectively.

In comparison to the best performing NAS and hand-crafted architectures in Ta-
ble 4.4 (discussed in Section 4.4.2), EfficientNets are significantly better in terms of
robustness to adversarial attacks. The difference in HRS score of EfficientNet from
the best performing architecture is nearly 10%. In the case of PGD, a difference of
6% is quite significant for an ImageNet scale dataset. This significant difference in
robustness raises the following question, What makes EfficientNets more robust than
other architectures?

Variant Clean % FGSM F-FGSM PGD HRS
B0 91.35 48.94 42.80 8.11 14.89
B4 92.73 66.73 59.26 16.99 28.71
B7 91.57 60.13 48.48 11.20 19.96

Table 4.1: EfficientNet Architecture comparison on ImageNet dataset with fixed im-
age size of 224 x 224 (Top-5 Accuracy)

One significant difference between EffcientNet and existing NAS and hand-crafted
models is the scaling factor. Most of the hand-crafted and NAS-based architectures
are developed in a micro-style, i.elet@tokeneonedot, a small cell (like the ResNet block

45

or DARTS cell) is developed/searched, and it is stacked to build the full architectures
of varying depths and parameter sizes. In the case of EfficientNet, this scaling is done
systematically using the compound scaling method described in Eqn. ??. The differ-
ence of 6% to PGD attack can be purely attributed to the use of compound scaling,
[132] echoes our claim; in the context of adversarial training, they empirically show
that compound scaling can help achieve adversarial robustness when used for scal-
ing any architectures. However, there is one crucial down-side of compound scaling.
In general, the compound coefficient φ is specified by the user, and determining the
optimal values for α, β, γ requires a grid-search to be performed. This is one of the
main drawbacks of compound scaling as performing a grid search and choosing a good
initial compound coefficient φ requires a good amount of computing power and brings
back the trial-and-error mode in which most of the early deep learning architectures
are developed. Letting NAS figure out the optimal way to scale a neural network
would alleviate the compute required for grid-search and makes the complete process
of finding an adversarially robust architecture end-to-end.

While 16% accuracy for a standard PGD attack might seem less compared to
adversarially trained counterparts, our primary goal is to show that adversarial ac-
curacy can be easily achieved as an add-on without using any form of adversarial
training. Since NAS is already the de-facto choice for achieving SoTA clean accuracy
on standard datasets, making adversarial robustness an add-on to these architectures
would be a convenient way to make deep learning architectures resilient to simple
adversarial attacks.

4.4.2 How do NAS based models compare with Hand-crafted
models in terms of Architectural Robustness?

The HRS score and robustness of different hand-crafted and NAS based architectures
on CIFAR-10, CIFAR-100, ImageNet and Flowers-102 datasets are shown in Tables
4.2, 4.3, 4.5, 4.4 respectively.

In the case of CIFAR-10 and CIFAR-100, NAS-based architectures outperform
hand-crafted architectures in terms of architectural robustness for attacks like FGSM
and F-FGSM by a significant margin. However, for stronger and most commonly
used attacks like PGD, NAS based architectures fail significantly compared to hand-
crafted models. In terms of HRS score, the difference in the best-performing NAS
and hand-crafted models is 21%.

This trend seen in CIFAR-10/100 for attacks like FGSM, F-FGSM did not hold

46

0

20

40

60

80

100

Re
sn

et
-1

8

Re
se

nt
-5

0

De
ns

en
et

-1
21

De
ns

en
et

-1
69

VG
G

16
 B

N

DA
RT

S

PD
AR

TS

NS
G

A-
N

et

Pr
ox

yle
ss

-N
AS

PC
-D

AR
TS

Hand-Crafted NAS

Ac
cu
ra
cy

CIFAR-10

0

20

40

60

80

100

Re
sn

et
-1

8

Re
se

nt
-5

0

De
ns

en
et

-1
21

De
ns

en
et

-1
69

VG
G

16
 B

N

DA
RT

S

PD
AR

TS

NS
G

A-
N

et

PC
-D

AR
TS

Hand-Crafted NAS

CIFAR-100

0

20

40

60

80

100

Re
sn

et
-1

8

Re
se

nt
-5

0

De
ns

en
et

-1
21

De
ns

en
et

-1
69

VG
G

16
 B

N

DA
RT

S

PD
AR

TS

PC
-D

AR
TS

Pr
ox

yle
ss

-N
AS

De
ns

eN
AS

-R
3

Hand-Crafted NAS

Ac
cu
ra
cy

ImageNet

0

20

40

60

80

100

Re
sn

et
-1

8

Re
se

nt
-5

0

De
ns

en
et

-1
21

De
ns

en
et

-1
69

VG
G

16
 B

N

DA
RT

S

PD
AR

TS

NS
G

A-
N

et

PC
-D

AR
TS

Hand-Crafted NAS

Flowers-102

Figure 4.3: Comparison of robustness and clean accuracy of different architectures; As
the difficult of the task or the scale of the dataset increases hand-crafted architectures
are more robust; (best performance is indicated by diamond symbol)
for large scale datasets like ImageNet and relatively complex tasks like fine-grained
classification. In the case of Imagenet, handcrafted models are more robust than NAS-
based architectures for all the attacks. Similarly, for the task of fine-grained classifica-
tion on Flowers-102 dataset, handcrafted models like DenseNet-169 and VGG-16 beat
NAS based architectures by a significant margin. Even in terms of clean accuracy,
for which the NAS-based models are generally known to be better than handcrafted
models, NAS architectures fail by a margin of ∼1.5% for the Flowers-102 dataset.

This trend of robustness for all four datasets is clearly shown in Figure 4.4. As the
dataset size or the task complexity increases, hand-crafted models start to be better
for all the three adversarial attacks. For stronger attacks like PGD, handcrafted

47

Model Clean % FGSM F-FGSM PGD AutoPGD HRS
ResNet-18 93.48 52.43 48.33 24.27 23.13 38.53
ResNet-50 94.38 50.05 45.78 23.45 22.35 37.57
DenseNet-121 94.76 50.94 47.14 24.06 22.66 38.38
DenseNet-169 94.74 53.53 49.47 26.21 24.35 41.06
VGG16 BN 94.07 52.42 46.16 20.03 18.63 33.03
DARTS [114] 97.03 58.53 45.03 7.09 6.10 13.21
PDARTS [115] 97.12 58.67 47.62 9.31 7.98 16.99
NSGA Net [124] 96.94 66.08 56.16 11.1 9.82 19.92
Proxyless-NAS [123] 97.92 51.73 58.38 3.22 4.24 6.23
PC-DARTS [116] 97.05 60.55 48.65 9.84 8.36 17.87

Table 4.2: Comparison of clean accuracy and adversarial robustness on CIFAR-10
dataset (Top-1 Accuracy)

Model Clean % FGSM F-FGSM PGD AutoPGD HRS
ResNet-18 63.87 17.08 17.12 6.05 5.39 11.05
ResNet-50 73.09 19 18.12 5.63 5.16 10.45
DenseNet-121 78.71 22.9 22.22 7.28 6.68 13.33
DenseNet-169 82.44 22.73 21.66 7.37 6.90 13.53
VGG16 BN 72.05 17.09 15.15 4.27 3.81 8.06
DARTS [114] 82.43 24.91 16.34 2.32 1.89 4.51
PDARTS [115] 83.07 27.69 20.23 3.09 2.66 5.96
NSGA Net [124] 85.44 34.93 24.1 2.26 1.94 4.40
PC-DARTS [116] 81.83 26.22 18.35 2.93 2.51 5.66

Table 4.3: Comparison of clean accuracy and adversarial robustness on CIFAR-100
dataset (Top-1 Accuracy)

models are more robust when compared to NAS based architectures at any given
dataset scale. While NAS based architectures achieve SoTA clean accuracy in general,
the robustness of these architectures is very erratic.

Model Clean % FGSM F-FGSM PGD AutoPGD HRS
ResNet18 89.08 32.75 18.03 2.41 21.65 4.70
ResNet50 92.86 46.28 26.22 4.68 20.93 8.90
DenseNet121 91.97 56.20 38.11 6.932 24.20 12.89
DenseNet169 92.81 61.89 44.22 10.46 27.15 18.80
VGG16 91.52 33.34 13.54 1.55 19.57 3.05
DARTS 91.26 54.41 31.18 2.94 20.81 5.70
P-DARTS 92.61 55.53 33.87 4.11 20.67 7.86
PC-DARTS 92.49 58.90 37.86 4.75 21.52 9.04
Proxyless-NAS 92.54 59.56 39.69 6.48 22.28 12.11
DenseNAS-Large 92.80 47.91 27.25 2.97 19.62 5.76
DenseNAS-R3 93.81 54.99 32.11 4.32 19.94 8.25

Table 4.4: Comparison of clean accuracy and adversarial robustness on ImageNet
dataset (Top-5 Accuracy)

In summary, as the dataset size (in terms of the number of classes) or the task’s
complexity increases, NAS-based architectures are more vulnerable to adversarial
attacks than hand-crafted models if no adversarial training is performed.

48

Model Clean % FGSM F-FGSM PGD AutoPGD HRS
ResNet-18 95.48 54.33 51.16 11.23 10.38 20.10
ResNet-50 97.31 53.97 52.38 11.36 10.01 20.34
DenseNet-121 97.19 67.4 58.61 16 13.80 27.48
DenseNet-169 97.44 69.11 62.76 18.56 16.48 31.18
VGG16 BN 95.24 72.16 66.06 27.59 26.74 42.78
DARTS [114] 95.97 64.47 59.95 19.29 18.19 32.12
PDARTS [115] 95.12 55.31 51.16 9.52 8.55 17.31
NSGA Net [124] 92.55 40.05 33.58 2.69 2.08 5.23
PC-DARTS [116] 94.02 54.7 45.3 6.84 6.23 12.75

Table 4.5: Comparison of clean accuracy and adversarial robustness on Flowers-102
dataset (Top-1 Accuracy)

4.4.3 Does an increase in the number of parameters of Ar-
chitecture help improve Robustness?

[133] and [96] observed that within the same family of architectures, increasing the
number of network parameters helps improve robustness. We hypothesize that thus
increasing model capacity benefits network robustness. To study this claim, we com-
pare the robustness of five families of architectures on the ImageNet dataset with
respect to the parameter count. For comparing the trends, we use PGD accuracy
along with the Per-parameter Harmonic Robustness Score (PP-HRS). The five dif-
ferent families of architectures we considered for this study are mentioned below.

Firstly, we choose all the eight different variants of the EfficientNet family intro-
duced in Section 4.4.1, followed by a recent SoTA NAS-based approach DenseNAS.
DenseNAS architectures are developed using two different search spaces. DenseNAS-
A/B/C and Large are developed using a MobileNetV2-based search space, and DenseNAS-
R1, R2, R3 are developed using a ResNet based search space. These networks are
listed in the increasing order of their parameters. Lastly, to also understand the trend
in hand-crafted models, we study the robustness of standard DenseNet and ResNet
models.

All the results of this comparison are shown in Table 4.6 and Figure 4.4. In
4/5 families considered for this study, an increase in parameters increases both clean
and adversarial accuracy. The maximum value of the parameter count in these four
families in nearly 26 million. This trend of increase in robustness with parameter
count is also seen in the fifth family (EfficientNet) but only up to a parameter count of
20 million. Increasing the parameters ”alone” beyond 20 million results in a decrease
of both clean and adversarial accuracy; this is probably why EfficientNet considers
different image sizes for each of the eight networks. After a certain point, increasing
the parameters alone will not help improve robustness, and Efficient, which has the

49

Family Variant Params (M) Clean % PGD PP-HRS

Efficient-Net

B0 5.29 91.36 8.11 14.90
B1 7.79 88.89 5.47 7.00
B2 9.11 92.77 11.40 11.79
B3 12.23 93.04 13.37 10.11
B4 19.34 92.73 16.99 7.86
B5 30.39 90.95 9.37 2.96
B6 43.04 91.86 11.71 2.55
B7 66.35 91.57 11.20 1.59

DenseNAS

A 4.77 90.94 1.84 3.61
B 5.58 91.89 2.13 3.56
C 6.13 92.31 2.29 3.48
Large 6.48 92.80 2.97 4.24
R1 11.09 91.33 2.01 3.93
R2 19.47 92.47 3.19 3.51
R3 24.66 93.81 4.32 3.71

ResNet 18 11.69 89.08 2.41 4.69
50 25.56 92.86 4.68 4.08

DenseNet 121 7.98 91.97 6.93 12.89
169 14.15 92.81 10.46 10.60

Table 4.6: Comparison of parameter count vs Adversarial accuracy for five different
family of architectures on ImageNet dataset

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

121 169 18 50 A B C Large R1 R2 R3 B0 B1 B2 B3 B4 B5 B6 B7

DenseNet ResNet DenseNAS
MobileNet Search

space

DenseNAS
ResNet Search

space

Efficient-Net

PG
D

Ac
cu

ra
cy

Pa
ra

m
et

er
 C

ou
nt

 (M
)

Params (M) PGD

Figure 4.4: Comparison of PGD accuracy and Parameter count across different family
of architectures

50

best adversarial accuracy in the case of ImageNet dataset, conveys this.
”In what family of architectures, the increase in parameter count is helping the

performance?”, to better understand this, we report PP-HRS in Table 4.6. In the
case of DenseNAS models developed using MobileNet-V2 search space, an increase in
parameters from DenseNAS-A to DenseNAS-Large is improving both clean accuracy
and adversarial robustness; which as a result led to improved PP-HRS score. For
all the other families, the increased parameter count does not give a significant and
sufficient improvement in the PP-HRS score and adversarial robustness.

In summary, adversarial robustness can be improved by increasing the number
of parameters, but this holds only to an extent. Beyond a certain point (approxi-
mately 20-25 million as per our results), increasing parameters alone cannot improve
adversarial robustness.

4.4.4 Where does the source of adversarial vulnerability lie
for NAS? Is it in the search space or in the way the
current methods are performing the search?

In Section 4.4.2, we have seen that NAS based architectures are more robust than
hand-crafted architectures for small scale datasets and simpler attacks. However,
when it comes to standard attacks like PGD, NAS-based architectures are not robust
even at the scale of CIFAR-10. Most of the existing NAS methods perform the search
on CIFAR-10 or a subset of ImageNet, and the discovered cell is stacked and trained
for other datasets. To understand whether the problem lies in the search space or in
the way search is being performed by the existing methods, we performed two simple
experiments.

Our first experiment is motivated by [125]; [125] shows that a randomly sampled
cell in the DARTS search space gives as good a clean accuracy as a searched cell.
To test if this fact also holds for the case of adversarial robustness, we sampled
random cells from the DARTS search space, stacked and trained them using the
standard procedure, and tested their robustness on the CIFAR-10 dataset. Due to
the randomness involved, we report the value over four different runs; results of this
experiment are shown in Table 4.7. Randomly sampled cells have a better PGD
accuracy than the searched architecture, but the variance is very high, which shows
relying on randomly sampled architectures for adversarial robustness is not a good
idea; this led us to our second experiment.

For the second experiment, we randomly sample cells from the DARTS search

51

space to build small models (please refer to Figure 4.2 for a diagrammatic representa-
tion of this procedure). After training these models independently, we ensemble the
outputs of all these models using a simple linear network. This linear model consists
of 2 linear layers with Batch-norm and one fully connected layer towards the end for
outputting logits based on the number of classes in the dataset. This linear model is
just fine-tuned for two epochs. Entire ensemble is treated as one single-network when
generating the adversarial examples. To make a fair comparison, we ensure that the
ensemble as a whole has the same number of cells as the standard DARTS networks.
Since the procedure uses randomly sampled architectures, we run the entire sample-
train-ensemble procedure four times and report the mean value in Table 4.7. Since
this is an expensive procedure computationally, due to the randomness involved, we
restrict our experiments to the CIFAR-10 dataset and DARTS search space.

Table 4.7: Adversarial accuracy comparison of DARTS based architectures
on CIFAR-10 dataset

Model # cells Params (M) Clean % PGD
DARTS [114] 20 3.35 97.03 7.09
P-DARTS [115] 20 3.43 97.12 9.31
PC-DARTS [116] 20 3.63 97.05 9.84
RANDOM1 20 2.73 ± 0.49 95.57 ± 0.40 14.47 ± 4.70
ENSEMBLE2 20 2.74 ± 0.41 93.77 ± 0.39 21.68 ± 0.35
1 Randomly picked architectures from DARTS search-space. Value re-

ported over four runs
2 Ensemble of small, randomly picked architectures from DARTS search

space. Value reported over four runs

Surprisingly this simple ensemble of randomly sampled architectures can improve
the PGD accuracy of DARTS based models by nearly 12% and can decrease the
variance by ∼10%. Now, this leads to two interesting conclusions; (1) Learning to
build a simple network to combine the outputs of randomly sampled architectures
can give clean accuracy with adversarial robustness as an add-on. In this case, we
used a simple linear model; replacing this with a searched NAS based architecture can
improve the results further. (2) Using NAS to search for an ensemble of architectures
can be a potential way to achieve adversarial robustness as an add-on to SoTA clean
accuracy. In this case, the NAS objective should be modified to find small models
that can complement each other. We plan to explore this in our future work.

52

4.5 Conclusion
In this chapter, we presented a detailed analysis of the adversarial robustness of NAS
and hand-crafted models and show how the complex topology of neural networks can
be leveraged to achieve adversarial robustness without any form of adversarial train-
ing. We also introduce a metric that can be used to calculate the trade-off between
clean and adversarial accuracy within and across different families of architectures.
Finally, we show that using NAS to find an ensemble of architectures can be one
potential way to build robust and reliable models without any form of adversarial
training.

53

Chapter 5

On the Use of Skip Connections
for Transfer Learning

5.1 Need for Input-Adaptive Skip Connections
Existing efforts in transfer learning can be broadly divided into two categories: mech-
anisms for fine-tuning of pre-trained weights in a task-specific manner [134, 135, 136,
137, 138] and regularisation schemes [139, 140, 141, 142, 143] to make the pre-trained
features more suitable to the current task. While our method falls in the former
category, unlike previous methods, we primarily focus on improving the interaction
between pre-trained features, as defined by the skip connections. We develop a mech-
anism that can be easily integrated and used in existing architectures.

We view skip connections as a handle that can control pre-trained feature inter-
actions at various granularities. Though skip connections are widely used in modern-
day architectures, their primary usage has focused on training of deeper models. In
this work, we introduce an architectural modification using skip connections that are
weighted and input-conditioned. Our modified version, called Adaptive Skip Con-
nections (AdaSkips), allows us to transfer a model pre-trained on a source dataset to
a newer target dataset by simply learning interactions between pre-trained features
using such adaptive skip connections.

While the standard practice of one skip connection for a block of layers addresses
the problem of training very deep neural networks, revisiting skip connections as a
mechanism to control the routing of feature information across layers in a neural net-
work can allow modeling complex interactions between the features. To this end, we
consider all possible skip connections between layers of a pre-trained neural network

54

Input Image

Input Image

Pre-trained features

Hyper Network

Hyper Network

Chihuahua

Chihuahua

Width/dashes
denote varied

weights for each
skip connection

Outputs weights for each
skip connection

Figure 5.1: Illustration of AdaSkips for two images of same class from Stanford-Dogs
[8] dataset. AdaSkips determine which skip connections to use and assigns a weight
for each pre-trained feature map via skip connections.

as possible routes for a given input. The target input is fed to an auxiliary (small
and lightweight) HyperNetwork [144] to obtain weights for each skip connection in
the above model.

Such input-adaptive skip connections (AdaSkips) provide for learning input condi-
tioned models, allowing better reuse of the learned features from a pre-trained model.
We show that this reasonably simple strategy outperforms existing methods on stan-
dard TL benchmarks with negligible training time overhead and almost the same time
as base models at test time. In particular, we show that this strategy works well even
in low-data regimes when there is limited data available from the target dataset. Our
overall approach is illustrated in Fig 5.1. Our key contributions can be summarized
as follows:

1. We propose AdaSkips, a simple and effective use of skip connections in existing
architectures to facilitate better feature reuse for transfer learning (TL). AdaSkips
uses a hypernetwork to learn input-conditioned skip connection weights on target
data, thus making the process of adaptively selecting and weighing skip connections
end-to-end differentiable and optimizing directly for task loss.

2. AdaSkips can not only be used independently on pre-trained models to perform TL,
but can also be easily added to existing methods to further improve performance.

3. We perform a comprehensive suite of experiments on standard TL benchmarks,
and show that our method consistently outperforms existing methods, including

55

in low-data regimes when target domain data is limited. We also study the gener-
alizability of our method by demonstrating its use for more complex tasks such as
zero-shot domain adaptation, object detection and semantic segmentation. Our
thorough analysis and ablations show that careful routing and re-weighting of
pre-trained features is a promising avenue for better TL performance.

5.2 Transfer Learning and Input-Conditioned Ar-
chitectures

Transfer Learning: Transfer learning is widely adopted in domains where it is
difficult to construct large-scale well-annotated datasets. Transfer learning settings
can be broadly classified into two categories, 1. Transductive transfer learning (no
labeled data available in target domain) 2. Inductive transfer learning (labeled data
available in target domain). In both of these settings, fine-tuning of the pre-trained
weights is common along with the introduction of a FC layer having neurons equal to
the number of classes in the target dataset. Finetuning can be done in different ways;
one can choose to finetune all the features of the pre-trained model or finetune only
the last few layers. Recently there has been much work on improving transfer learning
[145, 134, 141, 139, 136, 142, 135, 143, 140, 137, 138] and all of these methods fall
in one of the two categories mentioned above. In contrast to most of these methods,
which introduce explicit regularisation or a learned policy to select which layers or
filters to use, we primarily make use of a commonly used inductive bias, the skip
connections to develop a flexible finetuning mechanism. While most of existing works
mainly focus on either Inductive or Transductive transfer learning, our method is
suitable for both the settings and can be integrated easily with any existing transfer
learning methods.
Skip Connections: Skip connections can help preserve low-level features and avoid
performance degradation when adding more layers. Since the introduction of skip
connections, several works have been proposed to use skip connections selectively.
Rather than using skip connections in a specific manner (one for a set of two or three
layers), [146] has introduced DenseNets that use all possible skip connections in a feed-
forward manner and replaced the fully-differentiable addition operation in ResNets
with concatenation. Due to the absence of any input conditioning in DenseNets, all
the skip connections are used for every data point, introducing overhead on the num-
ber of addition operations required. [147] introduced SparseNet, a sparse variant of

56

DenseNet which drops connections in a fixed manner without any input-conditioning
i.e., it drops connections from middle layers preserving only the farthest and nearest
connections. Unlike these approaches, we select which skip connections to use and
assign a weight to each skip connections in a input-specific manner.

[148] proposed weighted skip connections for super-resolution; while the high-level
idea of their work is close to ours, there are significant differences in the way we ap-
proach the design of the skip connection, primarily in how we assign the weight to the
skip connection. To determine each skip connection weight in the network, they use
a separate self-attention mechanism, which is acceptable computationally for their
method because the maximum number of skip connections in their network architec-
ture is 15. In our case, we use only four hypernetworks for any variant of ResNet [37].
Additionally, their method and results can directly benefit from the variance reduc-
tion approach we discuss in Section ??. Lastly, our method is specifically designed
for transfer learning, keeping in mind the size of large networks that are commonly
used.
Input-conditioned architectures: Best performing deep neural networks have tens
of millions of parameters and hundreds of layers. This increase in depth and parame-
ters comes with increased prediction accuracy. However, the relationship between ac-
curacy and the number of parameters, layers is not linear. Very few images in a given
dataset might require all the layers. So to make the weights input conditioned [136]
proposed SpotTune, it determines which layers to fine-tune in an input-conditioned
manner. In contrast to their approach, our method can work in a setting where all
the layers except the fully-connected layers are frozen, and we only weight the skip
connections of each layer.

Another body of work primarily focuses on using input-conditioning to decrease
the cost of inference; many methods [149, 150, 151, 152, 153] have been proposed to
reduce the cost of inference by choosing layers in an input conditioned manner. While
we condition a small part of the network on the input, our goal is entirely different
from this line of work. Our goal is to perform better when fine-tuning, and unlike
most of the methods listed above, we only condition a small part of the network
architecture (skip connection) rather than the entire network. While all these works
focus on conditioning the weights, we focus on conditioning the input image on the
path to be followed, keeping the pre-trained weights untouched.
Hypernetworks: [144] introduced hypernetworks, an approach of using one network
to generate weights of another network. While Hypernetworks were initially intro-
duced to generate weights of an entire network, we only use them to generate weights

57

for skip connections in a network. The primary reason for the usage of hypernetwork
is to enable adaptive selection of pre-trained features.

5.3 AdaSkips for Transfer Learning
Preliminaries: We begin by briefly describing the standard transfer learning setting
as well as skip connections in most commonly used architectures, before describing
our method on how these skip connections can be leveraged and re-designed to allow
controlling interactions between pre-trained features.

The standard transfer learning setup consists of a source dataset DS and target
dataset DT . Generally, the target dataset has lesser number of samples when com-
pared to the source dataset |DT | << |DS | thus necessitating transfer and ensuring
that a large-model can be easily pre-trained on DS without problems of overfitting.
The primary goal of a transfer learning approach is to learn a good representation
FS on DS and leverage that representation along with DT to obtain a newer repre-
sentation that helps in solving the task on the target dataset DT accurately without
any overfitting on DT . Let the features learned on DS be denoted by FS , where FS

k

denotes a single layer or a block of layers, say with convolutional, max-pooling oper-
ations and activation functions. Notably, FS , the final representation learned from
DS , is a composition of features learned at each layer, and can be written as below
for a given input sample xs:

FS = FS
k(FS

k−1(. . . (FS
1(xs)))) (5.1)

Now, for transferring FS to the target dataset, the last fully-connected layer, FS
k

is typically replaced with FT
k which contains as many neurons as the classes in the

target dataset. The other pre-trained weights and the weights of the new FC layer
are updated with the help of samples from DT . Let the final representation learned
on the target dataset then be given by:

FT = FT
k(FS

k−1(. . . (FS
1(xt)))) (5.2)

where xt is an input sample from DT .
As mentioned previously, Fk denotes a single layer (or a block of layers com-

prising convolutional, max-pooling layers along with the commonly used activation
functions). For example, in the case of ResNet [37], Fk could be a residual block
with a skip connection. Most modern-day architectures design such blocks and stack

58

blocks together along with skip connections to build larger architectures. Given Eqns
5.1 and 5.2, the output representation for any F j which represents a block of layers
with a skip connection can be denoted as:

F j = F j(F j−1(. . . (F1(x)));Wj) + F j−1(x;Sw)︸ ︷︷ ︸
Skip connection

(5.3)

where Wj denotes the weights corresponding to the jth block and the highlighted
term in Eq 5.3 refers to the representation learned by the previous block, which is
obtained with the help of a simple identity mapping i.e, Sw = I. While existing
transfer learning methods [141, 139, 136, 142, 135, 143, 140, 137, 138] primarily focus
on modifying or fine-tuning Wj, we instead focus on learning an input-conditioned
skip connection and thus a weighted combination of features which are adaptive to a
given input image without modifying Wj.

AdaSkips: As discussed above, the addition of features obtained from previous
layers, F j−1(x) using skip connections (Eqn 5.3) helps propagate information in deep
neural network models with many layers during backpropagation. We leverage this
simple and elegant design of a skip connection to transfer pre-trained features to other
datasets more effectively. In other words, our fundamental objective is to develop a
mechanism that allows us to control the interactions among pre-trained features in a
way to achieve effective transfer the features to a distinct target dataset. To this end,
we introduce AdaSkips, which help maneuver the learned low-level and high-level
features of a pre-trained model in an input-adaptive manner for a target dataset.
In order to allow such an adaptive approach, we first introduce all skip connections
possible between each block in a module (a set of blocks) of the network which is
trained on the source dataset. When learning to combine pre-trained features, a
feature combination that is optimal for one image might be suboptimal for another
image, even from the same dataset or class label. Keeping this in mind, we learn
feature combinations in an input-conditioned manner using a separate, small and
lightweight hypernetwork (H) parametrized by weights θ. Thus, for a given input
x, the skip connections of the model are weighted in an input-conditioned manner
using a hypernetwork H. Following Eqn 5.3, the output of a block Fj now changes

59

as follows when AdaSkips are introduced:

λi = H(x; θ)

F j = F j(F j−1(. . . (F1(x)));Wj) +
j−1∑

i=1

F i(x;λi)
(5.4)

Intuitively, we input the image to the hypernetwork to obtain mixing coefficients
λ{1,...(j−1)} for each of the skip connections in the network. Since the hypernetwork
is a parametrized neural network and therefore fully differentiable, it can be trained
directly on the task loss via gradient descent. Unlike standard skip connections with
λi = 1, adaptive skip connections have input-conditioned weights on them instead.
We note that since the skip connections are introduced after training, our model
can be directly used with existing pre-trained models. An end-to-end algorithm for
transfer learning using AdaSkips is shown in Algorithm 2.

Algorithm 2: AdaSkips for Transfer Learning
1 Input: Pre-trained model FS

1...k with k modules; Samples xd
m=1...n ∈ DT in

n batches; Randomly initialised hypernetworks H1...k; Loss function used for
classification L

2 Training: Initialize FD using FS and freeze initial layers; Introduce all
possible skip connections (p) in each block of FD

1...k

3 for num_epochs do
4 for xd

m=1...n do
5 for j = 1 . . . k do
6 λ1...p = Hj(xm

d ; θj)

7 FD
j = FD

j(xm
d ;Wj) +

j−1∑

i=1

FD
i(xm

d ;λi)

8 end
9 Calculate L (task loss
10 Update Fk

D (update non-frozen layers
11 Update Hk (update hypernetworks
12 end
13 end
14 Output: FD- model fine-tuned on the target dataset

Addressing variance introduced by AdaSkips: Random initialization of weights
in a multi-layer network can result in large variance in outputs potentially resulting in
unstable training [154]. Several weight initialization methods [154, 155, 156] have been
proposed to address this problem. Kaiming initialization [156] is a popular strategy

60

typically used to maintain the variance between the input and output of every block.
However, when skip connections are present in an architecture, this initialization
introduces a new problem of increased variance [157]. The output of any given jth
block, F j, with one skip connection is given by F j = F j(F j−1(x)) + F j−1(x). The
variance of the output representation can hence be written as:

Var(F j) = Var(F j(F j−1(x)) + F j−1(x))
= Var(F j(F j−1(x))) + Var(F j−1(x)))

+ Cov(F j(F j−1(x)),F j−1(x)))
(5.5)

It is known that when a network is initialized with standard initialization strategies
such as Kaiming initialization [156], the variance of input and output of the block
remains the same (we include proof for Kaiming initialization in the Appendix). Be-
sides, as shown in [157], the correlation term in Eqn 5.5 turns out to be negligible, and
the first two variance terms will be approximately the same (due to the initialization
strategy such as Kaiming’s). Hence, when skip connections are present, the overall
variance of the block output representation would approximately equal two times the
variance of the input representation:

Var(F j) ≈ 2Var(F j−1(x)) (5.6)

The variance thus doubles at each block and exponentially increases with an increas-
ing number of blocks. A general solution to address this problem is to introduce
normalization layers like BatchNorm [158] inside the block. However, when AdaSkips
are introduced, the variance increases even more rapidly since we add features from
all preceding blocks, linearly increasing the variance with each additional connection.
To address this variance, we add a small number of batch-normalization layers as
discussed below.
Hypernetworks and Batch-normalization for AdaSkips: We now describe the
design of the hypernetwork along with the procedure followed to introduce additional
batch-norm layers. Any standard contemporary DNN model developed by stacking
blocks of layers can be segregated into a set of modules, which we denote as F j, with
each module containing varying number of blocks. The input x is passed through
these modules in a feedforward manner. When AdaSkips are introduced, before pass-
ing the input x to module F j, we first pass it through the hypernetwork H and obtain
the weights λi for each of the skip connections in that module. Once the skip con-
nection weights λi are obtained, we pass the input x to the module F j, along with

61

the mixing coefficients i.e. skip connection weights λi. If a module contains k blocks,
we introduce a total k(k+1)/2 skip connections in the module and consequently the
hypernetwork outputs the weight for each of the k(k+1)/2 coefficients. As discussed
earlier, in order to curtail the variance introduced by adding new skip connections,
at the end of each module, we add one batch-normalization layer which helps alle-
viate the variance introduced by adding outputs from all possible skip connections.
Considering that we need only weights of skip connections (and not all parameters
of the network), our hypernetwork consists of a simple two-layer CNN with ReLU
activations, normalization layers, and a final fully-connected layer to determine the
weights for skip connections. The output of the hypernetwork is constrained between
[0, 1] using a sigmoid activation.

5.4 Experiments and Results
In this section, we compare our methodology with six different transfer learning
methods, including state-of-the-art approaches: LWF [141], BSS [142], DELTA [143],
StochNorm [140], Co-Tuning [137], and Bi-Tuning [138]. We also compare with a
vanilla baseline, where the backbone architecture is finetuned end-to-end on the target
dataset. We study our empirical results on the standard TL benchmark provided by
the library in [3], comprising FGVC-Aircraft [159] and Stanford-Cars [160] datasets,
which are commonly reported across all the above baselines. To test the effectiveness
of our approach in the low-data regime, we train the model on 15%, 30%, 50% and
100% of the training data for both the above datasets. Going beyond, we also study
the effectiveness of our approach on more complex tasks including zero-shot domain
adaptation (later in this section), as well as object detection and segmentation (in
the Appendix).
Results of TL Performance with Existing Methods. Table 5.1 presents the
results of our method against the abovementioned baseline methods. In order to
show that AdaSkips can be easily integrated with existing TL approaches, we also
add AdaSkips to the state-of-the-art Bi-Tuning [138] method and show its results.
We follow the standard benchmark [3] training protocol with ResNet-50 as our back-
bone architecture, similar to all recent methods in this direction [140, 137, 138]. We
emphasize that no modifications are made to the training protocols of the bench-
mark for fair comparison. As shown in Table 5.1, AdaSkips outperforms existing
approaches on almost all experiments consistently, even with varying amounts of
training data in the target domain. Bi-Tuning [138] uses contrastive learning and

62

Method FGVC-Aircraft Stanford-Cars
15% 30% 50% 100% Avg 15% 30% 50% 100% Avg

Vanilla Baseline 41.6 57.8 68.7 80.2 62.1 41.1 65.9 78.4 87.8 68.3
+ LWF 44.1 60.6 68.7 82.4 64.0 44.9 67.0 77.6 87.5 69.3
+ BSS 43.6 59.5 69.6 81.2 63.5 43.3 67.6 79.6 88.0 69.6
+ DELTA 44.4 61.9 71.4 82.7 65.1 45.0 68.4 79.6 88.4 70.4
+ Co-Tuning 45.9 61.2 71.3 82.2 65.2 49.0 70.6 81.9 89.1 72.7
+ StochNorm 44.3 60.6 70.1 81.5 64.1 44.4 68.1 79.1 87.9 69.9
+ Bi-Tuning 47.2 64.3 73.7 84.3 67.4 48.3 72.8 83.3 90.2 73.7
+ AdaSkips 46.9 64.8 74.3 85.3 67.8 48.5 73.8 82.5 90.4 73.8
+ Bi-Tuning + AdaSkips 47.7 65.1 76.5 87.1 69.1 49.2 73.9 84.3 91.1 74.6
Table 5.1: Comparison of performance of AdaSkips with existing methods on standard
TL benchmark [3], including in low-data regimes with limited target data. (E.g, 50%
denotes availability of 50% of target dataset for finetuning). Note that AdaSkips
can not only outperform existing TL approaches, but can also improve
performance of existing TL approaches (see row for Bi-Tuning + AdaSkips)

leverages both supervised and unsupervised pre-trained representations, which per-
haps makes it stronger compared to other baselines. AdaSkips instead uses a simple
strategy to outperform all baselines including Bi-Tuning on most settings. Moreover,
as shown in the last row, adding AdaSkips to state-of-the-art methods like Bi-Tuning
improves the performance significantly.
Results on Zero-shot Domain Adaptation: To further evaluate the utility of
AdaSkips for learning transfer learning, we test AdaSkips on Zero-shot domain adap-
tation (ZSDA) for digit classification. In ZSDA, the models are trained on a given
source dataset and evaluated on their ability to transfer to a different target dataset
that has the same classes but is from a different data distribution. We follow the same
experimental setting as Uniform Prior [161], and evaluate AdaSkips using a ResNet-
18 architecture. We consider three datasets, MNIST [162], SVHN [163], USPS [164]
all of which have the same classes (0-9 digits). Additionally, we also experiment
with adding both the Uniform Prior [161] and AdaSkips to investigate the ability of
AdaSkips to work synergistically with other transfer learning methods. The results
for ZSDA are shown in Table 5.2.

We continue to observe that by simply adding AdaSkips, we significantly improve
the model’s performance on the target dataset. Moreover, AdaSkips also works well
with existing ZSDA methods such as Uniform Prior [161], and Adversarial Discrim-
inative Domain Adaptation [165], showing how it is a general solution that can be
applied alongside existing techniques.

63

Table 5.2: AdaSkips improves performance of existing ZSDA methods.
Comparison of introducing AdaSkips for Zero-Shot domain adaptation using a base
ResNet-18 network

ResNet-18 MNIST →USPS USPS →MNIST SVHN→MNIST
Vanilla 49.0 ± 0.2 42.8 ±0.1 69.7 ± 0.1
+ AdaSkips 56.5 ± 0.7 47.0 ± 0.2 75.3 ± 0.2
+ Uniform prior [161] 67.2 ± 0.1 56.2 ± 0.1 71.3 ± 0.1
+ Uniform prior + AdaSkips 71.3 ± 0.3 61.0 ± 0.2 77.9 ± 0.2
ADDA [165] 88.2 ± 0.1 89.0 ± 0.1 73.4 ± 0.2
+ AdaSkips 90.1 ± 0.3 90.7 ± 0.2 81.1 ± 0.5
+ Uniform Prior 91.6 ± 0.1 92.7 ± 0.3 79.4 ± 0.1
+ Uniform Prior + AdaSkips 92.4 ± 0.4 94.1 ± 0.1 83.6 ± 0.2
Target only 98.1 ± 0.2 99.8 ± 0.1 99.8 ± 0.1

Time and Storage Complexity: In terms of parameters, models with AdaSkips
have slightly more parameters because of the hyper-network used for input condition-
ing (a quantitative overview of flop and parameter counts is provided in Section 5.5.2).
This translates to a marginal increase in training time of the models (models with
AdaSkips take approximately 1.1-1.2x more training time than the vanilla baseline).
There is negligible difference between baseline models and models with AdaSkips in
terms of inference time though. To study if providing this additional storage to the
baseline model would counter the improvement in performance, we point to a result
in Table 5.3 in Sec 5.5, where we show ResNet-18+AdapSkips outperforms ResNet-34
by a margin of 10%. This highlights the usefulness of the proposed method and that
the minimal cost overhead may be valuable.

5.5 Analysis and Ablation Studies
The proposed methodology includes various components like input-conditioned rout-
ing, using all the skip connections, introducing a batch normalization layer at the
end of each module, using a hypernetwork to learn the weights for skip connections.
In this section, we understand the contribution of each component and analyze the
learned lambda values.

5.5.1 Does Routing alone help?
To understand if input-conditioned routing can work alone in a standalone manner,
we test the performance of architectures with AdaSkips in the standard and most

64

commonly used [166, 167, 168] transfer learning setting of fine-tuning just the last
fully connected layer with the backbone network frozen. We use four architectures
and five different image classification data sets.

First, we consider datasets that have minimal semantic relationship, i.e., the
source and target datasets have minimal class overlap, which is a practical transfer
learning setting. Second, we consider datasets that have a high semantic relation-
ship (similar classes in the source and target datasets). Dividing the commonly used
transfer learning datasets into two bins and analyzing the performance separately
will give us a better picture of where AdaSkips are helpful. For all the experiments
in this section we use pre-trained weights of models trained on the ImageNet [169]
dataset, we directly use the weights provided by PyTorch[170]. Please note that the
pre-trained backbone and the experimental setting used in the current section and
Table 5.1, Sec. 5.4 are completely different, this is the primary reason for significant
difference in numbers.
Target and Source Datasets with Minimal Semantic Relationship:

In this section, we study the effect of AdaSkips when there is minimum or no
class overlap between the source and target datasets. The transfer learning datasets
we consider in this section are, FGVC-Aircraft [159], Food-101 [171] and Stanford-
Cars [160], these datasets have very minimum or no class overlap with ImageNet
dataset. This setting is challenging and practically useful since there is very mini-
mal or zero overlap in the classes of source and target datasets. Moreover, all the
datasets considered in this section are fine-grained classification datasets, which are
comparatively difficult to standard classification datasets.

Results for this section are qualitatively and quantitatively shown in Fig 5.2 and
first three columns of Table 5.3, respectively. For models with AdaSkips, we intro-
duce all the possible skip connections and train the hypernetwork, which learns how
to combine the pre-trained features in an input conditioned manner and compare
directly to finetuning. None of the pre-trained weights are modified when training
the hypernetwork. We observe a significant improvement in classification accuracy of
up to 26% using AdaSkips, compared to the baseline architecture.
Target and Source Datasets with High Semantic Relationship: Similarly,
we extend the experiments to using target datasets that have high class overlap with
the source dataset i.e., ImageNet. Stanford-Dogs [8] and Oxford-Flowers [172] are
classic examples as ImageNet contains a wide variety of flower and dog species. To
understand if better feature interaction using AdaSkips will be helpful in cases like
these where there is significant overlap in the classes, we test AdaSkips on these two

65

Figure 5.2: Models with AdaSkips start better and improve with training;
Qualitative comparison of validation accuracy of WideResNet-50 on datasets that
have minimal class overlap with ImageNet

datasets. We follow the same experimental procedure as before; the results are shown
in the fourth, fifth columns of Table 5.3. As one may expect, the relative improvement
of using AdaSkips is smaller as pre-trained features already have enough information
about the classes/objects in the target dataset since there is a high semantic relation-
ship between the source and target datasets.

Table 5.3: Comparison of different architectures on five fine-grained classification
datasets. AdaSkips improve performance significantly when the semantic
relationship between source and target datasets is minimal

Source Dataset:
ImageNet

Minimal semantic relation between
source and target datasets

High semantic relation between
source and target datasets

Architecture FGVC-Aircraft Food-101 Stanford-Cars Flowers-102 Stanford-Dogs
ResNet-18 32.79 ± 1.1 41.43 ± 1.5 39.07 ± 0.4 92.27 ± 0.6 74.02 ± 0.6
+ AdaSkips 43.12 ± 0.6 62.16 ± 0.5 48.77 ± 0.2 94.47 ± 0.4 79.01 ± 0.1
ResNet-34 33.92 ± 0.1 40.69 ± 2.8 39.49 ± 0.9 93.00 ± 0.7 80.68 ± 0.8
+ AdaSkips 46.19 ± 0.4 66.76 ± 0.0 53.67 ± 2.0 96.17 ± 0.1 82.85 ± 0.4
ResNeXt-50 32.66 ± 1.6 55.37 ± 0.3 41.20 ± 0.6 93.61 ± 0.8 87.30 ± 0.9
+ AdaSkips 50.22 ± 0.8 68.71 ± 3.0 62.47 ± 0.2 96.26 ± 0.7 85.94 ± 1.8
WideResNet50 30.29 ± 0.9 52.12 ± 0.7 36.60 ± 0.3 91.53 ± 0.2 87.81 ± 0.4
+ AdaSkips 47.81 ± 0.7 69.07 ± 1.3 54.89 ± 0.6 96.05 ± 0.1 88.11 ± 0.3

5.5.2 Flop and Parameter Count Statistics
Table 5.4 shows a comparison of parameters and flops between standard models and
models with AdaSkips. Since models with AdaSkips use four 2-layer hyper-networks

66

and 4 additional batch-norm layers, they have more parameters. Due to the use of all
possible skip connections, the flops are higher. Our current implementation does not
leverage sparsity in outputs of the hyper-network, which can decrease the number of
flops significantly. We believe that this cost overhead may not be significant when
compared to the improvement in results. Regarding the increase in parameter count,
the input and output dimensions of the layers in the hyper-network depend on the
base network. As the input dimension of the base network increases, the number of
parameters increases. This is the primary reason for significant increase in parameters
for ResNeXt-50 and WideResNet-50 models.

Table 5.4: Qualitative comparison of Parameters and Flops for standard models and
models with AdaSkips on FGVC-Aircraft

Architecture Flops (G) Parameters (M)
ResNet-18 1.82 11.23
+ AdaSkips 4.61 16.10
ResNet-34 3.68 21.34
+ AdaSkips 6.47 26.22
ResNeXt-50 4.30 23.18
+ AdaSkips 38.33 97.79
WRN-50 11.50 67.10
+ AdaSkips 45.49 141.6

We would like to re-emphasise that the improvement in performance by using AdaSk-
ips cannot be attributed to parameters alone. For example, there is a significant
increase in the number of parameters from ResNet-18 to ResNet-34 but that does
not result by itself in performance improvement in Tables 5.3, 5.5. Carefully selecting
hyper-network layer dimensions in manner specific to the base network and leveraging
the hyper-network’s sparsity can decrease the parameters and flops reasonably.

5.5.3 Fine-tuning in Limited Data settings
In many real-world applications of transfer learning, the amount of labeled data avail-
able is limited, which makes it important to test the effectiveness of AdaSkips in such
settings. Towards this, we create a subset of FGVC-Aircraft [159] and Stanford-
Cars [160] datasets with 50% and 25% of the dataset available while training. We
randomly sample the subset for each dataset, maintaining the same class distribu-
tion. The experimental results for this section are shown in Fig 5.3, where we see

67

that the model continues to outperform vanilla finetuning over two standard network
architectures.

Figure 5.3: Models with AdaSkips are better even when the labelled data is
limited. Qualitative visualisation to show the effectiveness of AdaSkips with varying
amounts of labelled data

5.5.4 Study of different components involved in AdaSkips
In this section, we understand the contribution of each component involved in AdaSk-
ips and analyze the learned lambda values. Results for all the analyses in the sub-
section are shown in Table 5.5.
Effect of having all skip connections: In contrast to the idea of one skip con-
nection per a block of a layers, we introduce all the possible skip connections in a
feed-forward manner and sum the output of all skip connections towards the end
of each block. Introducing skip connections in this manner may help in long-range
interaction between the features. As shown in Table 5.5, introducing these skip con-
nections in a naive way makes the models perform poorly due to the high variance in
the output.
Effect of BatchNorm: In order to control the variance introduced by the use of
all possible skip connections, we add a batch-normalisation layer at the end of each
module. From the results shown in Table 5.5, it is clear that batch-norm significantly
helps in dealing with the variance, but the hypernetwork is still required for input
conditioned routing.
Effect of HyperNetwork: Finally, as shown in Table 5.5, the use of a hypernetwork
increases performance by finding skip connection paths based on the input itself.

68

Table 5.5: HyperNetwork and Batchnorm both play a key role in improving
the performance. Quantitative ablation analysis of marginal contribution of each
component in AdaSkips.

Architecture FGVC-Aircraft Stanford-Cars
ResNet-18 32.79 ± 1.1 39.07 ± 0.4
+ All Skips 29.71 ± 1.2 34.26 ± 0.1
+ All Skips + BN 42.63 ± 1.1 46.60 ± 0.3
+ All Skips + BN + Random 10.32 ± 4.1 11.01 ± 0.5
+ All Skips + BN + HyperNW 43.12 ± 0.6 48.77 ± 0.2
ResNet-34 33.92 ± 0.1 39.49 ± 0.9
+ All Skips 24.02 ± 0.1 22.84 ± 0.3
+ All Skips + BN 38.36 ± 0.7 38.80 ± 0.2
+ All Skips + BN + Random 2.90 ± 1.5 2.00 ± 0.3
+ All Skips + BN + HyperNW 46.19 ± 0.4 53.67 ± 2.0
ResNeXt-50 32.66 ± 1.6 41.20 ± 0.6
+ All Skips 26.72 ± 1.7 27.32 ± 0.8
+ All Skips + BN 44.66 ± 0.7 50.43 ± 0.4
+ All Skips + BN + Random 6.93 ± 1.7 7.30 ± 2.1
+ All Skips + BN + HyperNW 50.22 ± 0.8 62.47 ± 0.2
WRN-50 30.29 ± 0.9 36.60 ± 0.3
+ All Skips 25.81 ± 0.7 25.93 ± 0.7
+ All Skips + BN 43.91 ± 0.6 49.80 ± 0.1
+ All Skips + BN + Random 4.07 ± 0.7 4.16 ± 0.7
+ All Skips + BN + HyperNW 47.81 ± 0.7 54.89 ± 0.6

Layer-1 Layer-2 Layer-3 Layer-4

Index of the Skip connection

!
va

lu
e

(a
vg

)

FGVC-Aircraft

Stanford Cars

Figure 5.4: Despite not imposing a specific sparsity schema, the hyper-
network learns to select input-conditioned skip connections. Qualitative
visualisation of the weights (average) learned by the hypernetwork for all the test
samples of FGVC-Aircraft and Stanford Cars datasets, we use ResNeXt-50 as the
base network.

Replacing the hypernetwork with randomly predicted values between [0, 1] reduces
the performance drastically. To see if the hypernetwork is using all skip connections,

69

we visualize the weights of these skip connections in Fig 5.4. We take the average value
of weights for all the test samples in FGVC-aircraft and Stanford-Dogs datasets. Even
without imposing any specific sparsity schemes such as L1-penalty, some of the skip
connection weights are zeros, which shows how the hypernetwork learns to combine
features better than finetuning algorithms for feature reuse.

5.5.5 AdaSkips for Standard Image Classification
To test the effectiveness of AdaSkips on commonly used image classification bench-
marks, we ran experiments on CIFAR-10, CIFAR-100 and ImageNet datasets. Results
are shown in Table 5.6. AdaSkips once again shows improvement on these benchmarks
with no pre-training (without significant hyperparameter tuning). (For the Imagenet
dataset, we show results only with ResNet-18 architecture due to the significant time
and computation requirements.)

Table 5.6: AdaSkips can help improve performance on common image clas-
sification benchmark datasets without pre-training. Comparison of different
architectures when trained from scratch without any pre-training on standard image
classification datasets

Architecture CIFAR-10 CIFAR-100 ImageNet (Top-5)
ResNet-18 85.21 50.43 85.87
+ AdaSkips 85.47 52.17 86.16
ResNet-34 81.25 48.05 -
+ AdaSkips 84.76 51.77 -
ResNeXt-50 75.27 40.92 -
+ AdaSkips 80.42 41.90 -

5.6 Conclusion
In this chapter, we have shown how skip connections can be effectively leveraged
to transfer pre-trained features across completely different data sets. We introduce
AdaSkips, that can be directly used with any existing pre-trained models as a plug-
and-play without requiring any retraining on the source dataset. We demonstrated
the effectiveness of our method on a wide range of tasks and our through ablation and
analysis shows that input conditioned routing and weighing of pre-trained features
can be a very useful and potential direction for improving transfer learning. Future
follow-up work may extend this work to compositional representation learning by
studying how modularity can be imposed as an inductive bias to the model that will
further enhance the re-usability of the learned features.

70

Chapter 6

Conclusion and Future Directions

The problem of making deep learning models more data-efficient is studied in this
thesis. We primarily present the data efficiency of neural networks from the per-
spectives of modality, data annotation, adversarial robustness, and transfer learning.
Chapter 2 provided a brief background on multi-modal object detection and proposes
a pseudo-multi-modal framework that leverages the pre-trained RGB models to im-
prove object detection in thermal images. Just with 1/4th of the training data, the
proposed method beats the SoTA performance on a standard large-scale thermal im-
agery dataset. Chapter 3 primarily focuses on understanding the role of the initial
pool in the commonly used active learning framework. It explores and answers a very
interesting and important question of whether the active learning cycle can benefit
from an intelligently sampled initial pool; we conclude the chapter with our finding
that a randomly picked initial pool generally outperforms many existing methods
and VAE-based sampling slightly performs better than random sampling. Chapter
4 discusses adversarial robustness from an architecture perspective. It answers four
important questions that help us understand the role of network topology in improv-
ing adversarial robustness. We compare and contrast the adversarial robustness of
various hand-crafted and NAS based architectures. While NAS-based architectures
achieve slightly better accuracy than hand-crafted models on un-perturbed test sets,
they are significantly more vulnerable than hand-crafted models for adversarial at-
tacks. Chapter 5 discuss how a simple and most commonly used inductive bias like
skip connection can be leveraged to improve transfer learning. It proposes AdaSkips,
an input-conditioned skip connection that changes the way data is routed inside a
neural network; it performs better than existing transfer learning approaches and
shows promising results on tasks like object detection, segmentation, and zero-shot
domain adaptation. In terms of future work, we plan to extend the current work

71

and present a holistic view of data efficiency by exploring data efficiency from other
perspectives.

72

References

[1] F. A. Group. FLIR Thermal Dataset for Algorithm Training.
https://www.flir.in/oem/adas/adas-dataset-form/ . x, xii, 11, 12, 13, 15,
17

[2] S. Hwang, J. Park, N. Kim, Y. Choi, and I. S. Kweon. Multispectral pedes-
trian detection: Benchmark dataset and baseline. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2015 1037–1045. x, xii, 6,
11, 12, 13, 16

[3] J. Junguang, B. Chen, F. Bo, and M. Long. Transfer-Learning-library. https:
//github.com/thuml/Transfer-Learning-Library 2020. xi, 62, 63

[4] M. Liu, T. Breuel, and J. Kautz. Unsupervised Image-to-Image Translation
Networks. CoRR abs/1703.00848. xii, 8, 9, 10, 13, 14, 15

[5] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired Image-to-Image Transla-
tion using Cycle-Consistent Adversarial Networks. In Computer Vision (ICCV),
2017 IEEE International Conference on. 2017 . xii, 8, 9, 13, 14, 15

[6] D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers.
In SIGIR’94. Springer, 1994 3–12. xii, 21, 25, 27

[7] C. E. Shannon and W. Weaver. A Mathematical Theory of Communication.
University of Illinois Press, USA, 1963. xii, 25, 27

[8] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei. Novel Dataset for
Fine-Grained Image Categorization. In First Workshop on Fine-Grained Visual
Categorization, IEEE Conference on Computer Vision and Pattern Recognition.
Colorado Springs, CO, 2011 . xiv, 55, 65

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In Proceedings of the 25th International

73

https://github.com/thuml/Transfer-Learning-Library
https://github.com/thuml/Transfer-Learning-Library

Conference on Neural Information Processing Systems - Volume 1, NIPS’12.
Curran Associates Inc., Red Hook, NY, USA, 2012 1097–1105. 2

[10] R. Socher, Y. Bengio, and C. D. Manning. Deep Learning for NLP (without
Magic). In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Tutorial Abstracts. Association for Computational
Linguistics, Jeju Island, Korea, 2012 5. 2

[11] D. Amodei, S. Ananthanarayanan, Anubhai et al. Deep Speech 2 : End-to-
End Speech Recognition in English and Mandarin. In M. F. Balcan and K. Q.
Weinberger, eds., Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research. PMLR, New
York, New York, USA, 2016 173–182. 2

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, eds., Advances in Neural Information Processing Systems
25, 1097–1105. Curran Associates, Inc., 2012. 2

[13] NTSB. PRELIMINARY REPORT HIGHWAY HWY18MH010 2018. 3

[14] R. Retting and S. Schwatz. Governors Highway Safety Associa-
tion Pedestrian Traffic Fatalities by State (2017 Preliminary Data).
https://www.ghsa.org/sites/default/files/2018-02/pedestrians18.pdf . 3

[15] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. CoRR abs/1311.2524.
3

[16] R. B. Girshick. Fast R-CNN. CoRR abs/1504.08083. 3, 10

[17] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. CoRR abs/1506.01497. 3,
13

[18] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement. CoRR
abs/1804.02767. 3, 7

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09. 2009 . 3, 41, 42

74

[20] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html. 3, 11, 12,
13

[21] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Per-
ona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Common
Objects in Context. CoRR abs/1405.0312. 3, 11, 12

[22] A. L. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei. What’s the Point:
Semantic Segmentation with Point Supervision. In ECCV. 2016 . 3

[23] Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learning with
image data. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 2017 1183–1192. 4, 21, 27

[24] O. Sener and S. Savarese. Active Learning for Convolutional Neural Networks:
A Core-Set Approach. In International Conference on Learning Representa-
tions. 2018 . 4, 21, 26, 27

[25] W. H. Beluch, T. Genewein, A. Nürnberger, and J. M. Köhler. The Power
of Ensembles for Active Learning in Image Classification. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition 9368–9377. 4, 21, 27

[26] D. Yoo and I. S. Kweon. Learning Loss for Active Learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2019
93–102. 4, 21, 23

[27] S. Sinha, S. Ebrahimi, and T. Darrell. Variational Adversarial Active Learning.
arXiv preprint arXiv:1904.00370 . 4, 21, 26, 27

[28] A. Mottaghi and S. Yeung. Adversarial Representation Active Learning. ArXiv
abs/1912.09720. 4, 23

[29] B. Settles. Active learning literature survey. Technical Report, University of
Wisconsin-Madison Department of Computer Sciences 2009. 4

[30] B. Zoph and Q. V. Le. Neural Architecture Search with Reinforcement Learning.
arXiv e-prints arXiv:1611.01578. 4, 40

75

[31] S. Yan, B. Fang, F. Zhang, Y. Zheng, X. Zeng, H. Xu, and M. Zhang. HM-NAS:
Efficient Neural Architecture Search via Hierarchical Masking. arXiv e-prints
arXiv:1909.00122. 4

[32] X. Chen, L. Xie, J. Wu, and Q. Tian. Progressive differentiable architecture
search: Bridging the depth gap between search and evaluation. In Proceedings
of the IEEE International Conference on Computer Vision. 2019 1294–1303. 4

[33] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient Neural
Architecture Search via Parameter Sharing. arXiv e-prints arXiv:1802.03268.
4, 40

[34] M. Tan and Q. V. Le. EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks. arXiv e-prints arXiv:1905.11946. 4, 45

[35] M. Tan, R. Pang, and Q. V. Le. EfficientDet: Scalable and Efficient Object
Detection. arXiv e-prints arXiv:1911.09070. 4

[36] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Berkay Celik, and
A. Swami. Practical Black-Box Attacks against Machine Learning. arXiv e-
prints arXiv:1602.02697. 5

[37] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016 . 5, 57, 58

[38] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway Networks. arXiv
e-prints arXiv:1505.00387. 5

[39] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun. Repvgg: Making
vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021 13,733–13,742. 5

[40] T. T. Zin, H. Takahashi, and H. Hama. Robust Person Detection using Far
Infrared Camera for Image Fusion. In Second International Conference on In-
novative Computing, Informatio and Control (ICICIC 2007). 2007 310–310. 6

[41] T. P. Breckon, A. Gaszczak, J. Han, M. L. Eichner, and S. E. Barnes. Multi-
modal target detection for autonomous wide area search and surveillance 2013.
6

76

[42] S. Mangale and M. Khambete. Moving Object Detection using Visible Spectrum
Imaging and Thermal Imaging. In 2015 International Conference on Industrial
Instrumentation and Control (ICIC). 2015 590–593. 6

[43] S. Liu and Z. Liu. Multi-Channel CNN-based Object Detection for Enhanced
Situation Awareness. CoRR abs/1712.00075. 6

[44] M. Bertozzi, A. Broggi, C. Hilario, R. Fedriga, G. Vezzoni, and M. Del Rose.
Pedestrian Detection in Far Infrared Images based on the use of Probabilistic
Templates. 2007 327 – 332. 7

[45] J. W. Davis and M. A. Keck. A Two-Stage Template Approach to Person Detec-
tion in Thermal Imagery. In 2005 Seventh IEEE Workshops on Applications of
Computer Vision (WACV/MOTION’05) - Volume 1, volume 1. 2005 364–369.
7

[46] K. Jüngling and M. Arens. Feature based person detection beyond the visible
spectrum. 2009 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops 30–37. 7

[47] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features.
volume 3951. 2006 404–417. 7

[48] M. Peng, C. Wang, T. Chen, and G. Liu. NIRFaceNet: A Convolutional Neural
Network for Near-Infrared Face Identification. Information 7. 7

[49] E. J. Lee, B. C. Ko, and J.-Y. Nam. Recognizing pedestrian’s unsafe behaviors
in far-infrared imagery at night. Infrared Physics and Technology 76, (2016)
261 – 270. 7

[50] M. CHEVALIER, N. Thome, M. Cord, J. Fournier, G. Henaff, and E. Dusch.
LOW RESOLUTION CONVOLUTIONAL NEURAL NETWORK FOR AU-
TOMATIC TARGET RECOGNITION. In 7th International Symposium on
Optronics in Defence and Security. Paris, France, 2016 . 7

[51] I. Rodger, B. Connor, and N. Robertson. Classifying objects in lwir imagery
via cnns. In In Proc. SPIE: Electro-Optical and Infrared Systems: Technology
and Applications XII. 2016 . 7

[52] R. Abbott, J. Del Rincon, B. Connor, and N. Robertson. Deep object classifi-
cation in low resolution LWIR imagery via transfer learning. In Proceedings of
the 5th IMA Conference on Mathematics in Defence. 2017 . 7

77

[53] A. Berg, K. Öfjäll, J. Ahlberg, and M. Felsberg. Detecting Rails and Obstacles
Using a Train-Mounted Thermal Camera. In R. R. Paulsen and K. S. Pedersen,
eds., Image Analysis. Springer International Publishing, Cham, 2015 . 7

[54] A. Berg. Detection and Tracking in Thermal Infrared Imagery. Linköping Stud-
ies in Science and Technology. Thesis No. 1744, Linköping University, Sweden
2016. 7

[55] A. Leykin, Y. Ran, and R. Hammoud. Thermal-Visible Video Fusion for Moving
Target Tracking and Pedestrian Classification. 2007 . 8

[56] J. Wagner, V. Fischer, M. Herman, and S. Behnke. Multispectral Pedestrian
Detection using Deep Fusion Convolutional Neural Networks. 2016 . 8

[57] H. Choiand S. Kim, , and K. Sohn. Multi-spectral pedestrian detection based
on accumulated object proposal with fully convolutional networks. In 2016 23rd
International Conference on Pattern Recognition (ICPR). 2016 621–626. 8

[58] D. König, M. Adam, C. Jarvers, G. Layher, H. Neumann, and M. Teutsch. Fully
Convolutional Region Proposal Networks for Multispectral Person Detection. In
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). 2017 243–250. 8

[59] J. Liu, S. Zhang, S. Wang, and D. N. Metaxas. Multispectral Deep Neural
Networks for Pedestrian Detection. CoRR abs/1611.02644. 8

[60] Z. Yi, H. Zhang, P. Tan, and M. Gong. DualGAN: Unsupervised Dual Learning
for Image-to-Image Translation. CoRR abs/1704.02510. 8

[61] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo. StarGAN: Unified
Generative Adversarial Networks for Multi-Domain Image-to-Image Transla-
tion. CoRR abs/1711.09020. 8

[62] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised Cross-Domain Image Gen-
eration. CoRR abs/1611.02200. 8

[63] S. Mo, M. Cho, and J. Shin. InstaGAN: Instance-aware Image-to-Image Trans-
lation. CoRR abs/1812.10889. 8

[64] H. Lee, H. Tseng, J. Huang, M. K. Singh, and M. Yang. Diverse Image-to-Image
Translation via Disentangled Representations. CoRR abs/1808.00948. 8

78

[65] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li. Single-Shot Refinement Neural
Network for Object Detection. In CVPR. 2018 . 13, 16

[66] J. Yang, J. Lu, D. Batra, and D. Parikh. A Faster Pytorch Implementation of
Faster R-CNN. https://github.com/jwyang/faster-rcnn.pytorch . 14

[67] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-Image Translation with
Conditional Adversarial Networks. In Computer Vision and Pattern Recogni-
tion (CVPR), 2017 IEEE Conference on. 2017 . 14

[68] P. Munjal, N. Hayat, M. Hayat, J. Sourati, and S. Khan. Towards Robust and
Reproducible Active Learning Using Neural Networks. ArXiv abs/2002.09564.
21, 23, 27, 32

[69] S. Mittal, M. Tatarchenko, Ö. Çiçek, and T. Brox. Parting with Illusions about
Deep Active Learning. ArXiv abs/1912.05361. 21, 23

[70] D. Lowell, Z. C. Lipton, and B. C. Wallace. Practical Obstacles to Deploying
Active Learning. In EMNLP/IJCNLP. 2019 . 21, 22, 32

[71] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A Simple Framework
for Contrastive Learning of Visual Representations. ArXiv abs/2002.05709. 21,
25, 29, 36

[72] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised Representation Learning
by Predicting Image Rotations. ArXiv abs/1803.07728. 21, 25, 26

[73] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep Clustering for Un-
supervised Learning of Visual Features. In ECCV. 2018 . 21, 25, 26

[74] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros. Context
Encoders: Feature Learning by Inpainting. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) 2536–2544. 21, 25

[75] M. Noroozi, H. Pirsiavash, and P. Favaro. Representation Learning by Learning
to Count. 2017 IEEE International Conference on Computer Vision (ICCV)
5899–5907. 21, 25

[76] M. Noroozi and P. Favaro. Unsupervised Learning of Visual Representations
by Solving Jigsaw Puzzles. In ECCV. 2016 . 21, 25

79

[77] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised Visual Representation
Learning by Context Prediction. 2015 IEEE International Conference on Com-
puter Vision (ICCV) 1422–1430. 21, 25

[78] O. Siméoni, M. Budnik, Y. Avrithis, and G. Gravier. Rethinking deep active
learning: Using unlabeled data at model training. ArXiv abs/1911.08177. 23

[79] D. Mishkin and J. Matas. All you need is a good init. CoRR abs/1511.06422.
23

[80] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In Proceedings of the
2015 IEEE International Conference on Computer Vision (ICCV), ICCV ’15.
IEEE Computer Society, USA, 2015 1026–1034. 23

[81] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Y. W. Teh and M. Titterington, eds., Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning Research. PMLR, Chia Laguna
Resort, Sardinia, Italy, 2010 249–256. 23

[82] J. Kang, K. Ryu, and H.-C. Kwon. Using Cluster-Based Sampling to Select
Initial Training Set for Active Learning in Text Classification. 2004 384–388.
23

[83] R. Hu, B. M. Namee, and S. J. Delany. Off to a Good Start: Using Clustering
to Select the Initial Training Set in Active Learning. In FLAIRS Conference.
2010 . 23

[84] B. Settles, M. Craven, and S. Ray. Multiple-Instance Active Learning. In
Proceedings of the 20th International Conference on Neural Information Pro-
cessing Systems, NIPS’07. Curran Associates Inc., Red Hook, NY, USA, 2007
1289–1296. 23

[85] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. CoRR
abs/1312.6114. 26

[86] S. Dasgupta. Two faces of active learning. Theor. Comput. Sci. 412, (2011)
1767–1781. 26

80

[87] A. Bondu, V. Lemaire, and M. Boullé. Exploration vs. exploitation in active
learning : A Bayesian approach. The 2010 International Joint Conference on
Neural Networks (IJCNN) 1–7. 26

[88] T. Scheffer, C. Decomain, and S. Wrobel. Active Hidden Markov Models for
Information Extraction 2001. 27

[89] Y. Le and X. Yang. Tiny ImageNet Visual Recognition Challenge. 2015 . 27

[90] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015 . 27

[91] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016 770–778. 27

[92] S. Roy, A. Unmesh, and V. P. Namboodiri. Deep active learning for object
detection. In BMVC. 2018 . 28

[93] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. Class-Balanced Loss Based
on Effective Number of Samples. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 9260–9269. 28, 35

[94] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, and
L. Van Gool. Scan: Learning to classify images without labels. In Proceed-
ings of the European Conference on Computer Vision. 2020 . 30

[95] J.-B. Grill, F. Strub, F. Altch’e, C. Tallec, P. H. Richemond, E. Buchatskaya,
C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu,
R. Munos, and M. Valko. Bootstrap Your Own Latent: A New Approach to
Self-Supervised Learning. ArXiv abs/2006.07733. 36

[96] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards
Deep Learning Models Resistant to Adversarial Attacks. arXiv e-prints
arXiv:1706.06083. 39, 40, 41, 43, 49

[97] C. Xie and A. Yuille. Intriguing properties of adversarial training at scale. arXiv
e-prints arXiv:1906.03787. 39, 41

81

[98] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. arXiv e-prints
arXiv:1312.6199. 40

[99] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adver-
sarial Examples. arXiv e-prints arXiv:1412.6572. 40, 43

[100] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial Machine Learning at
Scale. arXiv e-prints arXiv:1611.01236. 40

[101] N. Carlini and D. Wagner. Towards Evaluating the Robustness of Neural Net-
works. arXiv e-prints arXiv:1608.04644. 40

[102] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. Berkay Celik, and
A. Swami. The Limitations of Deep Learning in Adversarial Settings. arXiv
e-prints arXiv:1511.07528. 40

[103] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. DeepFool: a simple and
accurate method to fool deep neural networks. arXiv e-prints arXiv:1511.04599.
40

[104] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. Mc-
Daniel. Ensemble Adversarial Training: Attacks and Defenses. arXiv e-prints
arXiv:1705.07204. 40

[105] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical
world. arXiv e-prints arXiv:1607.02533. 40

[106] A. Modas, S.-M. Moosavi-Dezfooli, and P. Frossard. SparseFool: A Few Pixels
Make a Big Difference. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2019 . 40

[107] E. Wong, L. Rice, and J. Zico Kolter. Fast is better than free: Revisiting
adversarial training. arXiv e-prints arXiv:2001.03994. 40, 43

[108] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay.
Adversarial Attacks and Defences: A Survey. arXiv e-prints arXiv:1810.00069.
40

[109] K. Ren, T. Zheng, Z. Qin, and X. Liu. Adversarial Attacks and Defenses in
Deep Learning. Engineering 6, (2020) 346 – 360. 40

82

[110] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adver-
sarial Examples. arXiv e-prints arXiv:1412.6572. 40

[111] A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis,
G. Taylor, and T. Goldstein. Adversarial training for free! In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.,
Advances in Neural Information Processing Systems 32, 3358–3369. Curran
Associates, Inc., 2019. 40

[112] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial
intelligence, volume 33. 2019 4780–4789. 40

[113] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV). 2018 19–34.
40

[114] H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable Architecture Search.
arXiv e-prints arXiv:1806.09055. 40, 42, 48, 49, 52

[115] X. Chen, L. Xie, J. Wu, and Q. Tian. Progressive Differentiable Architecture
Search: Bridging the Depth Gap between Search and Evaluation. arXiv e-prints
arXiv:1904.12760. 40, 42, 48, 49, 52

[116] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong. PC-DARTS:
Partial Channel Connections for Memory-Efficient Architecture Search. In In-
ternational Conference on Learning Representations. 2020 . 41, 42, 48, 49,
52

[117] J. Fang, Y. Sun, Q. Zhang, Y. Li, W. Liu, and X. Wang. Densely Connected
Search Space for More Flexible Neural Architecture Search. arXiv e-prints
arXiv:1906.09607. 41, 42

[118] M. Guo, Y. Yang, R. Xu, and Z. Liu. When NAS Meets Robustness: In Search
of Robust Architectures against Adversarial Attacks. CVPR . 41

[119] D. V. Vargas, S. Kotyan, and S. IIIT-NR. Evolving Robust Neural Architectures
to Defend from Adversarial Attacks. arXiv preprint arXiv:1906.11667 . 41

83

[120] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-10 (Canadian Institute for
Advanced Research) . 42

[121] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-100 (Canadian Institute for
Advanced Research) . 42

[122] M.-E. Nilsback and A. Zisserman. Automated Flower Classification over a Large
Number of Classes. In Indian Conference on Computer Vision, Graphics and
Image Processing. 2008 . 42

[123] H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct Neural Architecture Search
on Target Task and Hardware. In International Conference on Learning Rep-
resentations. 2019 . 42, 48

[124] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf. NSGA-Net: Neural Architecture Search using Multi-Objective
Genetic Algorithm. arXiv e-prints arXiv:1810.03522. 42, 48, 49

[125] A. Yang, P. M. Esperança, and F. M. Carlucci. NAS evaluation is frustratingly
hard. In International Conference on Learning Representations. 2020 . 42, 51

[126] T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu. Improving Adversarial Robust-
ness via Promoting Ensemble Diversity. volume 97 of Proceedings of Machine
Learning Research. PMLR, Long Beach, California, USA, 2019 4970–4979. 42

[127] F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks 2020. 43

[128] T. Pang, X. Yang, Y. Dong, H. Su, and J. Zhu. Bag of Tricks for Adversarial
Training. arXiv e-prints arXiv:2010.00467. 43

[129] J. Fan and W. Li. Adversarial Training and Provable Robustness: A Tale of
Two Objectives. arXiv e-prints arXiv:2008.06081. 43

[130] H. Kim. Torchattacks: A Pytorch Repository for Adversarial Attacks. arXiv
preprint arXiv:2010.01950 . 43

[131] A. Sanyal, P. K. Dokania, V. Kanade, and P. H. S. Torr. How benign is benign
overfitting? arXiv e-prints arXiv:2007.04028. 44

[132] C. Xie, M. Tan, B. Gong, A. Yuille, and Q. V. Le. Smooth Adversarial Training.
arXiv e-prints arXiv:2006.14536. 46

84

[133] D. Su, H. Zhang, H. Chen, J. Yi, P.-Y. Chen, and Y. Gao. Is Robustness the
Cost of Accuracy? – A Comprehensive Study on the Robustness of 18 Deep
Image Classification Models. arXiv e-prints arXiv:1808.01688. 49

[134] W. Ge and Y. Yu. Borrowing Treasures From the Wealthy: Deep Transfer
Learning Through Selective Joint Fine-Tuning. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017 . 54, 56

[135] Y. Guo, Y. Li, L. Wang, and T. Rosing. AdaFilter: Adaptive Filter Fine-Tuning
for Deep Transfer Learning. Proceedings of the AAAI Conference on Artificial
Intelligence 34, (2020) 4060–4066. 54, 56, 59

[136] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris. Spot-
Tune: Transfer Learning Through Adaptive Fine-Tuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2019 . 54, 56, 57, 59

[137] K. You, Z. Kou, M. Long, and J. Wang. Co-Tuning for Transfer Learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds., Advances
in Neural Information Processing Systems, volume 33. Curran Associates, Inc.,
2020 17,236–17,246. 54, 56, 59, 62

[138] J. Zhong, X. Wang, Z. Kou, J. Wang, and M. Long. Bi-tuning of Pre-trained
Representations. arXiv e-prints arXiv:2011.06182. 54, 56, 59, 62

[139] L. Xuhong, Y. Grandvalet, and F. Davoine. Explicit inductive bias for transfer
learning with convolutional networks. In ICML. 2018 . 54, 56, 59

[140] Z. Kou, K. You, M. Long, and J. Wang. Stochastic Normalization. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds., Advances
in Neural Information Processing Systems, volume 33. Curran Associates, Inc.,
2020 16,304–16,314. 54, 56, 59, 62

[141] Z. Li and D. Hoiem. Learning without Forgetting. In ECCV. 2016 . 54, 56, 59,
62

[142] X. Chen, S. Wang, B. Fu, M. Long, and J. Wang. Catastrophic Forgetting
Meets Negative Transfer: Batch Spectral Shrinkage for Safe Transfer Learn-
ing. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, eds., Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019 . 54, 56, 59, 62

85

[143] X. Li, H. Xiong, H. Wang, Y. Rao, L. Liu, and J. Huan. DELTA: DEEP
LEARNING TRANSFER USING FEATURE MAP WITH ATTENTION FOR
CONVOLUTIONAL NETWORKS. In International Conference on Learning
Representations. 2019 . 54, 56, 59, 62

[144] D. Ha, A. Dai, and Q. V. Le. HyperNetworks. arXiv e-prints arXiv:1609.09106.
55, 57

[145] S. Kornblith, J. Shlens, and Q. V. Le. Do Better ImageNet Models Transfer
Better? In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2019 . 56

[146] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely Connected
Convolutional Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017 . 56

[147] W. Liu and K. Zeng. SparseNet: A Sparse DenseNet for Image Classification.
arXiv e-prints arXiv:1804.05340. 56

[148] J. Wang and Y. Yang. Sellf-Adaptive Weighted Skip Connections for Image
Super-Resolution. In 2020 International Conference on Culture-oriented Science
Technology (ICCST). 2020 192–197. 57

[149] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez. SkipNet: Learning
Dynamic Routing in Convolutional Networks. In Proceedings of the European
Conference on Computer Vision (ECCV). 2018 . 57

[150] B. E. Bejnordi, T. Blankevoort, and M. Welling. Batch-shaping for learning
conditional channel gated networks. In International Conference on Learning
Representations. 2020 . 57

[151] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman, and
R. Feris. BlockDrop: Dynamic Inference Paths in Residual Networks. arXiv
e-prints arXiv:1711.08393. 57

[152] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep Networks
with Stochastic Depth. In B. Leibe, J. Matas, N. Sebe, and M. Welling, eds.,
Computer Vision – ECCV 2016. Springer International Publishing, Cham, 2016
646–661. 57

86

[153] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel,
and D. Wierstra. PathNet: Evolution Channels Gradient Descent in Super
Neural Networks. arXiv e-prints arXiv:1701.08734. 57

[154] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In JMLR W&CP: Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS 2010),
volume 9. 2010 249–256. 60

[155] D. Mishkin and J. Matas. All you need is a good init. arXiv e-prints
arXiv:1511.06422. 60

[156] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Sur-
passing Human-Level Performance on ImageNet Classification. arXiv e-prints
arXiv:1502.01852. 60, 61

[157] H. Zhang, Y. N. Dauphin, and T. Ma. Residual Learning Without Normaliza-
tion via Better Initialization. In International Conference on Learning Repre-
sentations. 2019 . 61

[158] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. In F. Bach and D. Blei, eds.,
Proceedings of the 32nd International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Research. PMLR, Lille, France,
2015 448–456. 61

[159] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-Grained
Visual Classification of Aircraft. Technical Report 2013. 62, 65, 67

[160] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3D Object Representations for
Fine-Grained Categorization. In 4th International IEEE Workshop on 3D Rep-
resentation and Recognition (3dRR-13). Sydney, Australia, 2013 . 62, 65, 67

[161] S. Sinha, K. Roth, A. Goyal, M. Ghassemi, H. Larochelle, and A. Garg. Uniform
Priors for Data-Efficient Transfer. arXiv e-prints arXiv:2006.16524. 63, 64

[162] Y. LeCun, C. Cortes, and C. Burges. MNIST handwritten digit database. ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2. 63

[163] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading
Digits in Natural Images with Unsupervised Feature Learning . 63

87

[164] J. J. Hull. A database for handwritten text recognition research. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 16, (1994) 550–554. 63

[165] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial Discriminative
Domain Adaptation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017 . 63, 64

[166] F. Chollet. The typical transfer learning workflow. https://keras.io/
guides/transfer_learning/ 2020. 65

[167] S. Chilamkurthy. Transfer Learning tutorial in PyTorch. https://pytorch.
org/tutorials/beginner/transfer_learning_tutorial.html 2020. 65

[168] Tensorflow. Create the base model from the pre-trained convnets. https:
//www.tensorflow.org/tutorials/images/transfer_learning 2020. 65

[169] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 2009 248–255. 65

[170] A. Paszke, S. Gross, F. Massa, A. Lerer et al. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. arXiv e-prints arXiv:1912.01703. 65

[171] L. Bossard, M. Guillaumin, and L. Van Gool. Food-101 – Mining Discrimina-
tive Components with Random Forests. In European Conference on Computer
Vision. 2014 . 65

[172] M.-E. Nilsback and A. Zisserman. Automated Flower Classification over a Large
Number of Classes. In Proceedings of the Indian Conference on Computer
Vision, Graphics and Image Processing. 2008 . 65

88

https://keras.io/guides/transfer_learning/
https://keras.io/guides/transfer_learning/
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://www.tensorflow.org/tutorials/images/transfer_learning
https://www.tensorflow.org/tutorials/images/transfer_learning

	Declaration
	Approval Sheet
	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	List of Publications
	Introduction and Background
	The Need for Data-Eﬀicient Neural Networks
	A Multi-Faceted view of Efficiency
	Efficiency: Modality Perspective
	Efficiency: Data Annotation Perspective
	Efficiency: Architecture and Robustness Perspective
	Efficiency: Transfer Learning Perspective

	Improving Object Detection in Thermal imagery
	Borrowing from Rich Domains like RGB
	Object Detection methods for Thermal Imagery
	Multi-Modal Thermal Object Detector (MMTOD)
	Experiments and Analysis
	Datasets and Experimental Setup
	Results

	Discussion and Ablation Studies
	Conclusion

	On Initial Pools for Deep Active Learning
	Understanding the role of Initial Pool in Deep AL
	Related Work
	Methods and Experimental Protocol
	Pool-based Active Learning Setting
	Proposed Initial Pool Sampling Strategies
	Active Learning Query Methods

	Implementation Details
	Additional Experiments

	Experimental Results
	Initial Pool Sampling Details
	Results

	More Training Details
	Slightly Modified ResNet18 Model
	Hyperparmeters for AL Training
	SimCLR, SCAN and VAE Training

	Conclusion

	On Adversarial Robustness: A Neural Architecture Search perspective
	Understanding Adversarial Robustness from an Architecture Perspective
	Adversarial Robustness and Neural Architecture Search
	Robustness of NAS models: A Study
	Analysis and Results
	How Robust is existing SoTA Image Classification Architecture without any form of Adversarial Training?
	How do NAS based models compare with Hand-crafted models in terms of Architectural Robustness?
	Does an increase in the number of parameters of Architecture help improve Robustness?
	Where does the source of adversarial vulnerability lie for NAS? Is it in the search space or in the way the current methods are performing the search?

	Conclusion

	On the Use of Skip Connections for Transfer Learning
	Need for Input-Adaptive Skip Connections
	Transfer Learning and Input-Conditioned Architectures
	AdaSkips for Transfer Learning
	Experiments and Results
	Analysis and Ablation Studies
	Does Routing alone help?
	Flop and Parameter Count Statistics
	Fine-tuning in Limited Data settings
	Study of different components involved in AdaSkips
	AdaSkips for Standard Image Classification

	Conclusion

	Conclusion and Future Directions
	References

